DOI QR코드

DOI QR Code

Topology Optimization of Incompressible Flow Using P1 Nonconforming Finite Elements

P1 비순응 요소를 이용한 비압축성 유동 문제의 위상최적화

  • Jang, Gang-Won (Faculty of Mechanical and Aerospace Engineering, Sejong Univ.) ;
  • Chang, Se-Myong (School of Mechanical and Automotive Engineering, Kunsan Nat'l Univ.)
  • 장강원 (세종대학교 기계항공우주공학부) ;
  • 장세명 (군산대학교 기계자동차공학부)
  • Received : 2012.01.09
  • Accepted : 2012.07.14
  • Published : 2012.10.01

Abstract

An alternative approach for topology optimization of steady incompressible Navier-Stokes flow problems is presented by using P1 nonconforming finite elements. This study is the extended research of the earlier application of P1 nonconforming elements to topology optimization of Stokes problems. The advantages of the P1 nonconforming elements for topology optimization of incompressible materials based on locking-free property and linear shape functions are investigated if they are also valid in fluid equations with the inertia term. Compared with a mixed finite element formulation, the number of degrees of freedom of P1 nonconforming elements is reduced by using the discrete divergence-free property; the continuity equation of incompressible flow can be imposed by using the penalty method into the momentum equation. The effect of penalty parameters on the solution accuracy and proper bounds will be investigated. While nodes of most quadrilateral nonconforming elements are located at the midpoints of element edges and higher order shape functions are used, the present P1 nonconforming elements have P1, {1, x, y}, shape functions and vertex-wisely defined degrees of freedom. So its implentation is as simple as in the standard bilinear conforming elements. The effectiveness of the proposed formulation is verified by showing examples with various Reynolds numbers.

P1 비순응 요소를 이용하여 정상 비압축성 Navier-Stokes 유동의 위상최적화 문제를 푸는 방법을 제시한다. 본 연구는 Stokes 유동의 위상최적화 문제에 P1 비순응 요소를 적용하여 그 수치적 효용성을 보인바 있는 이전 연구에 대한 후속 연구이다. 비압축성 물질 해석에서 잠김현상이 발생하지 않으며 선형형상함수를 가지는 P1 비순응 요소의 장점이 관성항을 가지는 유체 문제의 해석과 설계에도 유효한 지를 파악하고자 한다. 일반적으로 사용되는 혼합정식화법과 비교하여 P1 비순응 요소의 사용은 벌칙 함수를 이용하여 연속 방정식을 따로 사용하지 않고 운동방정식에 부과할 수 있기 때문에 자유도의 개수를 감소시킬 수 있다. 벌칙 파라미터가 해의 정확도에 주는 영향과 적정 범위는 수치적으로 검토하도록 한다. 또한 보통의 사각 비순응 요소들이 요소면의 중앙에 절점을 가지고 고차의 형상함수를 지니는데 비하여, 본 연구에서 제시하는 P1 비순응 요소는 요소의 꼭지점에 절점을 가지고 {1, x, y}의 P1 형상함수로 구성됨으로써 수치적인 구현의 용이함이 일반 선형 사절점 요소와 동일하다. 제안한 방법의 효용성을 다양한 레이놀즈수에 따른 유동최적화 문제들을 살펴봄으로써 검증하도록 한다.

Keywords

References

  1. Jang, G. W., Henry, P. and Chung, T., 2010, "P1- Nonconforming Quadrilateral Finite Element for Topology Optimization," International Journal for Numerical Methods in Engineering, Vol. 84, pp. 685-707. https://doi.org/10.1002/nme.2912
  2. Borrvall, T. and Petersson, J., 2003, "Topology Optimization of Fluids in Stokes Flow," International Journal for Numerical Methods in Fluids, Vol. 41, pp. 77-107. https://doi.org/10.1002/fld.426
  3. Guest, J. K. and Prévost J. H., 2006, "Topology Optimization of Creeping Fluid Flows Using a Darcy- Stokes Finite Element," International Journal for Numerical Methods in Engineering, Vol. 66, pp. 461-484. https://doi.org/10.1002/nme.1560
  4. Wiker, N., Klarbring, A. and Borrvall, T., 2007, "Topology Optimization of Regions of Darcy and Stokes Flow," International Journal for Numerical Methods in Engineering, Vol. 69, pp. 1374-1404. https://doi.org/10.1002/nme.1811
  5. Gersborg-Hansen, A., Sigmund, O. and Haber, R. B., 2005, "Topology Optimization of Channel Flow Problems," Structural and Multidisciplinary Optimization, Vol. 30, pp. 181-192. https://doi.org/10.1007/s00158-004-0508-7
  6. Brenner, S. and Sung, L., 1992, "Linear Finite Element Methods for Planar Elasticity," Mathematics of Computation, Vol. 59, pp. 321-338. https://doi.org/10.1090/S0025-5718-1992-1140646-2
  7. Douglas, Jr. J., Santos, J., E. and Sheen D., 2000, "A Nonconforming Mixed Finite Element Methods for Maxwell's Equations," Mathematical Models and Methods in Applied Sciences, Vol. 10, No. 4, pp. 596-613.
  8. Douglas, Jr. J., Santos, J. E. and Sheen D., 2001, "Nonconforming Galerkin Methods for the Helmholtz Problem," Numerical Methods for Partial Differential Equations, Vol. 17, pp. 475-494. https://doi.org/10.1002/num.1023
  9. Douglas, Jr. J., Santos, J. E., Sheen, D. and Ye, X., 1999, "Nonconforming Galerkin Methods Based on Quadrilateral Elements for Second Order Elliptic Problems," RAIRO Mathematical Modeling and Numerical Analysis, Vol. 33, No. 4, pp. 747-770. https://doi.org/10.1051/m2an:1999161
  10. Lee, C.-O., Lee, J. and Sheen, D., 2003, "A Locking-Free Nonconforming Finite Element Methods for Planar Linear Elasticity," Advances in Computational Mathematics, Vol. 19, pp. 277-291. https://doi.org/10.1023/A:1022838628615
  11. Rannacher, R. and Turek, S., 1972, "Simple Nonconforming Quadrilateral Stokes Element," Numerical Methods for Partial Differential Equations, Vol. 8, pp. 97-111.
  12. Park, C. and Sheen, D., 2003, "P1-Nonconforming Quadrilateral Finite Element Method for Second- Order Elliptic Problems," SIAM Journal on Numerical Analysis, Vol. 41, No. 2, pp. 624-640. https://doi.org/10.1137/S0036142902404923
  13. Hughes, T. J. R., Liu, W. K. and Brooks, A., 1979, "Finite Element Analysis of Incompressble Viscous Flows by the Penalty Function Formulation," Journal of Computational Physics, Vol. 30, pp. 1-60. https://doi.org/10.1016/0021-9991(79)90086-X
  14. Bendsøe, M. P. and Sigmund, O., 2004, Topology Optimization - Theory, Methods, and Applications, Springer, Berlin Heidelberg New York.
  15. Svanberg, K., 1987, "The Method of Moving Asymptotes - a New Method for Structural Optimization," International Journal for Numerical Methods in Engineering, Vol. 24, pp. 359-373. https://doi.org/10.1002/nme.1620240207