DOI QR코드

DOI QR Code

Load-Bearing Capacity of Subsea Pipeline with Variation of Sea Water Depth and Buried Depth

수심과 퇴적 깊이 변화에 따른 해저배관의 하중지지능력 평가

  • 백종현 (한국가스공사 연구개발원) ;
  • 김영표 (한국가스공사 연구개발원) ;
  • 김우식 (한국가스공사 연구개발원)
  • Received : 2011.12.15
  • Accepted : 2012.06.25
  • Published : 2012.10.01

Abstract

Subsea pipelines have been operated with buried depths of 1.2-4m underneath the seabed to prevent buoyancy and external impacts. Therefore, they have to show resistance to both the soil load and the hydrostatic pressure. In this study, the structural integrity of a subsea pipeline subjected to soil load and hydrostatic pressure was evaluated by using FE analyses. A parametric study showed that the internal pressure increased the plastic collapse depth by increasing the resistance to plastic collapse. The hoop stress increased with an increase in the buried depth for the same water depth; however, the hoop stress decreased with an increase in the water depth for the same buried depth.

해저배관은 부력과 외부 충격을 방지하기 위하여 1.2~4m의 매설 깊이로 설치되어 운영된다. 해저배관은 수압과 토하중에 의한 외압으로부터 소성붕괴에 대한 저항성을 가져야한다. 해저배관에 수압과 토하중으로 발생하는 원주응력을 유한요소해석으로 파악하여 배관의 건전성에 미치는 영향을 평가하였다. 내압은 외압에 의한 소성붕괴 저항성을 향상시켜 소성붕괴 발생 깊이를 증가시켰다 동일 수심에서는 매설 깊이 증가에 따라 원주응력은 증가하나, 동일 매설 깊이에서는 수심이 증가함에 따라 배관에서 발생하는 원주응력은 감소한다.

Keywords

References

  1. DNV OS F101, 2007, "Submarine Pipeline System."
  2. ISO13623, 2009, "Petroleum and Natural Gas Industries-Pipeline Transportation System."
  3. API RP 1111, 1999, "Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines."
  4. ASME 31.8, 2007, "Gas Transmission and Distribution Piping System."
  5. BSI 8010,2004, "Pipeline Subsea: Design, Construction and Installation."
  6. CSA Z662, 2007, "Oil and Gas Pipeline Systems."
  7. Ministry of Land, Transport and Maritime Affairs, 2005, "Design Standard for Harbors and Fishing Port."
  8. Bai, Y., Igland, R. and Moan, T., 1993, "Tube Collapse Under Combined Pressure, Tension and Bending," International Journal of Offshore and Polar Engineering, Vol. 3, No. 2, pp. 121-129.
  9. Park, T.D. and Kyriakides, S., 1996, "On the Collapse of Dented Cylinders Under External Pressure," International Journal of Mechanical Sciences, Vol. 38, pp. 557-578. https://doi.org/10.1016/0020-7403(95)00065-8
  10. Park, T.D. and Kyriakides, S., 1997, "On the Performance of Integral Buckle Arrestors for Offshore Pipelines, International Journal of Mechanical Sciences, Vol. 39, pp. 643-669. https://doi.org/10.1016/S0020-7403(96)00074-4
  11. Cosham, A. and Hopkins, P., 2004, "The Effects of Dents in Pipelines-Guidance in the Pipeline Defect Assessment Manual," Int. J. Pressure Vessels and Piping, Vol. 81, pp. 127-139. https://doi.org/10.1016/j.ijpvp.2003.11.004
  12. ABAQUS Version 6.8, 2009, Analysis User's Manual, ABAQUS Inc., Rhode Island, USA.
  13. Riks, E., 1987, "Progress in Collapse Analysis," Journal of Pressure Vessel Technology, Vol. 109, No. 1, pp. 33-41. https://doi.org/10.1115/1.3264853
  14. API 5L, 2007, "Specification for Line Pipe."
  15. Holloman, J. H., 1949, "Tensile Deformation," Transactions of the American Institute Metallurgical and Petroleum Engineers, Vol. 16, pp. 268-290.
  16. Gerwick, B. C., 2000, Construction of Marine and Offshore Structures, CRC Press LLC.
  17. Huang, X., Mihsein, M., Kibble, K. and Hall, R., 2000, "Collapse Strength Analysis of Casing Design Using Finite Element Method," Int. J. Pressure Vessels and Piping, Vol. 77, pp. 359-367. https://doi.org/10.1016/S0308-0161(00)00045-4