DOI QR코드

DOI QR Code

Compact and Temperature Independent Electro-optic Switch Based on Slotted Silicon Photonic Crystal Directional Coupler

  • 투고 : 2012.05.31
  • 심사 : 2012.08.06
  • 발행 : 2012.09.25

초록

In this paper, we have proposed a principle to design a compact and temperature independent electro-optic switch based on a slotted photonic crystal directional coupler (SPCDC). Infiltration of the slotted silicon photonic crystal with polymer enhances the slow light and decreases the switching length, whereas the different signs of thermo-optic coefficients of the polymer and silicon make the proposed switch stable within $25^{\circ}C$ to $85^{\circ}C$ temperature range. The SPCDC structure is modified to increase poling efficiency of the polymer in the slot and to flatten the dispersion diagram of the even mode to minimize the switching length.

키워드

참고문헌

  1. L. O'Faolain, D. M. Beggs, T. P. White, T. Kampfrath, K. Kuipers, and T. F. Krauss, "Compact optical switches and modulators based on dispersion engineered photonic crystals," IEEE Photon. J. 2, 404-414 (2010). https://doi.org/10.1109/JPHOT.2010.2047918
  2. M. J. Zablocki, A. Sharkewy, O. Ebil, S. Shi, and D. Parther, "Electro-optically switched compact coupled photonic crystal waveguide directional coupler," Appl. Phys. Lett. 96, 081110-1-081110-3 (2010). https://doi.org/10.1063/1.3330927
  3. S. P. Anderson, M. Haurylau, J. Zhang, and P. M. Fauchet, "Hybrid photonic crystal microcavity switches on SOI," Proc. SPIE 6477, 647712-1-647712-8 (2007).
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). https://doi.org/10.1038/nature02921
  5. J. H. Wulbern, A. Petrov, and M. Eich, "Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator," Opt. Express 17, 304-313 (2009). https://doi.org/10.1364/OE.17.000304
  6. J. H. Wulbern, J. Hampe, A. Petrove, M. Eich, J. Luo, A. K. Y. Jen, A. D. Falco, T. F. Krauss, and J. Bruns, "Electro-optic modulation in slotted resonant photonic crystal hetrostructures," Appl. Phys. Lett. 94, 241107-1-241107-3 (2009). https://doi.org/10.1063/1.3156033
  7. T. Baba, "Slow light in photonic crystals," Nature 2, 465-473 (2008).
  8. J. K. Hong and S. S. Lee, "Silica-based MMI-MZI thermooptic switch with large tolerance and low PDL," J. Opt. Soc. Korea 9, 119-122 (2005). https://doi.org/10.3807/JOSK.2005.9.3.119
  9. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40, 2666-2670 (2007). https://doi.org/10.1088/0022-3727/40/9/S07
  10. T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007). https://doi.org/10.1088/0022-3727/40/9/S06
  11. T. F. Krauss, "Why do we need slow light," Nature Photon. 2, 448-450 (2008). https://doi.org/10.1038/nphoton.2008.139
  12. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos, "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). https://doi.org/10.1364/JOSAB.19.002052
  13. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials 3, 211-219 (2004). https://doi.org/10.1038/nmat1097
  14. A. Y. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). https://doi.org/10.1063/1.1815066
  15. L. Juntao, T. P.White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 16, 6227-6232 (2008). https://doi.org/10.1364/OE.16.006227
  16. J. M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electrooptic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008). https://doi.org/10.1364/OE.16.004177
  17. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, and A. Jen, "Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V," Appl. Phys. Lett. 92, 92-94 (2008).
  18. S. Huang, T. D. Kim, J. Luo, S. K. Hau, Z. Shi, X. H. Zhou, H. L. Yip, and A. K.-Y. Jen, "Slow light enhanced E-O polymer nano-photonic modulator with ultra-high effective in-device r33," Appl. Phys. Lett. 96, 243311 (2010). https://doi.org/10.1063/1.3453659
  19. J. Wu, Y. Li, C. Peng, and Z. Wang, "Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration," Opt. Commun. 284, 2149-2152 (2011). https://doi.org/10.1016/j.optcom.2011.01.004
  20. R. Ding, T. Baehr-Jones, W.-J. Kim, A. Spott, M. Fournier, J.-M. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, "Sub-volt silicon-organic electrooptic modulator with 500 MHz bandwidth," J. Lightwave Technol. 29, 1112-1117 (2011). https://doi.org/10.1109/JLT.2011.2122244
  21. X. Wang, C. Lin, S. Chakravarty, J. Luo, A. K. Y. Jen, and R. T. Chen, "Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides," Opt. Lett. 36, 882-884 (2011). https://doi.org/10.1364/OL.36.000882
  22. S. Huang, J. Luo, H. Yip, A. Ayazi, X. H. Zhou, M. Gould, A. Chen, T. Baehr-Jones, M. Hochberg, and A. K.-Y. Jen, "Efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals," Adv. Mater. 24, OP42-OP47 (2012). https://doi.org/10.1002/adma.201102874
  23. W. C. Kim and D. W. Park, "Analysis of temperature effects on Raman silicon photonic devices," J. Opt. Soc. Korea 12, 288-297 (2008). https://doi.org/10.3807/JOSK.2008.12.4.288
  24. D. M. Beggs, T. P. White, L. O'Faolain, and T. F. Krauss, "Ultra compact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008). https://doi.org/10.1364/OL.33.000147
  25. D. M. Beggs, T. P. White, L. Cairns, L. O'Faolain, and T. F. Krauss, "Ultrashort photonic crystal optical switch actuated by microheater," IEEE Photon. Technol. Lett. 21, 24-26 (2009). https://doi.org/10.1109/LPT.2008.2008104
  26. B. A. Rose, A. J. Maker, and A. M. Armani, "Characterization of thermo-optic coefficient and material loss of high refractive index silica sol-gel films in the visible and near-IR," Opt. Material Express 2, 671-681 (2012). https://doi.org/10.1364/OME.2.000671
  27. C. Karnutsch, C. L. C. Smith, A. Graham, S. Tomljenovic- Hanic, R. C. McPhedran, B. J. Eggleton, L. O'Faolain, T. F. Krauss, S. Xiao, and N. A. Mortensen, "Temperature stabilization of optofluidic photonic crystal cavities," Appl. Phys. Lett. 94, 231114-1-231114-3 (2009). https://doi.org/10.1063/1.3152998
  28. S. Haishan, A. Szep, S. Shouyuan, D. Prather, L. Zhou, R. S. Kim, and D. Abeysinghe, "Achieving higher modulation efficiency in electrooptic polymer modulator with slotted silicon waveguide," J. Lightwave Technol. 29, 3310-3318 (2011). https://doi.org/10.1109/JLT.2011.2168385
  29. C. Changming, S. Xiaoqiang, W. Fei, Z. Feng, W. Hui, S. Zuosen, C. Zhanchen, and Z. Daming, "Electro-optic modulator based on novel organic-inorganic hybrid nonlinear optical materials," IEEE J. Quantum Electron. 48, 61-66 (2012). https://doi.org/10.1109/JQE.2011.2179019
  30. H. Aghababaeian, M. H. Vadjed-Sameie, and N. Granpayeh, "Temperature stabilization of group index in silicon slotted photonic crystal waveguides," J. Opt. Soc. Korea 15, 398-402 (2011). https://doi.org/10.3807/JOSK.2011.15.4.398
  31. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, "Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration," Opt. Express 17, 1628-1635 (2009). https://doi.org/10.1364/OE.17.001628
  32. http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands.
  33. J. M. Lee, D. J. Kim, G. H. Kim, O. K. Kwon, K. J. Kim, and G. Kim, "Controlling temperature dependence of silicon waveguide using slot structure," Opt. Express 16, 1645-1652 (2008). https://doi.org/10.1364/OE.16.001645
  34. Y. Chung, J. Song, W. Han, and U. Paek, "New compensation method for temperature sensitivity of fiber Brags grating using bi-metal," J. Opt. Soc. Korea 7, 84-88 (2003). https://doi.org/10.3807/JOSK.2003.7.2.084
  35. S. M. Lee, "Passive temperature compensating package for optical long period fiber grating," J. Opt. Soc. Korea 3, 74-79 (1999). https://doi.org/10.3807/JOSK.1999.3.2.074
  36. D. Lee, K. H. Kim, S. H. Hwang, M. H. Lee, and E. H. Lee, "Optimization of thermo-optic parameters for temperatureinsensitive LPWG refractometers," ETRI Journal 28, 739-744 (2006). https://doi.org/10.4218/etrij.06.0106.0180
  37. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, "Athermal siliconon- insulator ring resonators by overlaying a polymer cladding on narrowed waveguides," Opt. Express 17, 14627- 14633 (2009). https://doi.org/10.1364/OE.17.014627
  38. C. Park, K. Joo, S. W. Kang, and H. R. Kim, "A PDMScoated optical fiber Bragg grating sensor for enhancing temperature sensitivity," J. Opt. Soc. Korea 15, 329-334 (2011). https://doi.org/10.3807/JOSK.2011.15.4.329
  39. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, "Flat band slow light in symmetric line defect photonic crystal waveguides," IEEE Photon. Technol. Lett. 21, 1571-1573 (2009). https://doi.org/10.1109/LPT.2009.2030160

피인용 문헌

  1. Dynamic Load-Balancing Algorithm Incorporating Flow Distributions and Service Levels for an AOPS Node vol.18, pp.5, 2014, https://doi.org/10.3807/JOSK.2014.18.5.466
  2. Performance Enhancement of Cavity Assisted Photonic Crystal De-Multiplexerin Slow Light Regime vol.20, pp.3, 2016, https://doi.org/10.3807/JOSK.2016.20.3.401