DOI QR코드

DOI QR Code

A COMPARATIVE STUDY OF LATTICE BOLTZMANN AND VOLUME OF FLUID METHOD FOR TWO-DIMENSIONAL MULTIPHASE FLOWS

  • Ryu, Seung-Yeob (Korea Atomic Energy Research Institute (KAERI)) ;
  • Ko, Sung-Ho (Department of Mechanical Design Engineering, Chungnam National University)
  • Received : 2011.04.29
  • Accepted : 2011.09.16
  • Published : 2012.08.25

Abstract

The volume of fluid (VOF) model of FLUENT and the lattice Boltzmann method (LBM) are used to simulate two-phase flows. Both methods are validated for static and dynamic bubble test cases and then compared to experimental results. The VOF method does not reduce the spurious currents of the static droplet test and does not satisfy the Laplace law for small droplets at the acceptable level, as compared with the LBM. For single bubble flows, simulations are executed for various Eotvos numbers, Morton numbers and Reynolds numbers, and the results of both methods agree well with the experiments in the case of low Eotvos numbers. For high Eotvos numbers, the VOF results deviated from the experiments. For multiple bubbles, the bubble flow characteristics are related by the wake of the leading bubble. The coaxial and oblique coalescence of the bubbles are simulated successfully and the subsequent results are presented. In conclusion, the LBM performs better than the VOF method.

Keywords

References

  1. L. S. Tong and Y. S. Tang, Boiling Heat Transfer and Two-phase Flow, Taylor & Francis (1997).
  2. D. Juric and G. Tryggvason, "Computations of Boiling Flows," Int. J. Multiphase Flow, vol. 24, pp. 387-410 (1997).
  3. F. H. Harlow and J. E. Welch, "Numerical calculation of time-dependent viscous incompressible flow," Phys. Fluids, vol. 8, pp. 2182-2189 (1965). https://doi.org/10.1063/1.1761178
  4. C. W. Hirt and B. D. Nichols, "Volume of fluid (VOF) method for the dynamics of free boundaries," J. Comput. Phys., vol. 39, pp. 210-225 (1981).
  5. J. A. Sethian, Level Set Methods, Cambridge University Press (1996).
  6. Fluent Inc., Fluent Manual 6.3 (2006).
  7. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford (2001).
  8. S. Chen and G. D. Doolen, "Lattice Boltzmann method for fluid flows," Ann. Rev. Fluid Mech., vol. 30, pp. 329-364 (1998). https://doi.org/10.1146/annurev.fluid.30.1.329
  9. H. W. Zheng, C. Shu and Y. T. Chew, "A Lattice Boltzmann for Multiphase Flows with Large Density Ratio," J. Comput. Phys., vol. 218, pp. 353-371 (2006). https://doi.org/10.1016/j.jcp.2006.02.015
  10. D. Jacqmin, "Calculation of two-phase Navier-Stokes flows using phase-field modeling," J. Comput. Phys., vol. 155, pp. 96-127 (1999). https://doi.org/10.1006/jcph.1999.6332
  11. D. Bhaga and M. E. Weber, "Bubbles in viscous liquids : shapes, wakes and velocities," J. Fluid Mech., vol. 105, pp. 61-85 (1981). https://doi.org/10.1017/S002211208100311X
  12. J. Hua and J. Lou, "Numerical simulation of bubble rising in viscous liquid," J. Comput. Phys., vol. 222, pp. 769-795 (2007). https://doi.org/10.1016/j.jcp.2006.08.008
  13. G. Brereton and D. Korotney, "Coaxial and oblique coalescence of two rising bubbles," AMD, vol. 119, ASME, New York (1991).
  14. N. Takada, M. Misawa, A. Tomiyama and S. Hosokawa, "Numerical simulation of two- and three-dimensional twophase fluid motion by lattice Boltzmann method," Computer Physics Communications, vol. 129, pp. 233-246 (2000). https://doi.org/10.1016/S0010-4655(00)00110-7
  15. M. van Sint Annaland, N. G. Deen and J. A. M. Kuipers, "Numerical simulation of gas bubbles behavior using a three-dimensional volume of fluid method," Chemical Engineering Science, vol. 60, pp. 2999-3011 (2005). https://doi.org/10.1016/j.ces.2005.01.031
  16. A. Gupta and R. Kumar, "Lattice Boltzmann simulation to study multiple bubble dynamics," International Journal of Heat and Mass Transfer, vol. 51, pp. 5192-5203 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2008.02.050
  17. B. Niceno, Y. Sato, A. Badillo and M. Andreani, "Multi-scale Modeling and Analysis of Convective Boiling: Towards the Prediction of CHF in Rod Bundles," Nucl. Eng. Technol., vol. 42, pp. 620-635 (2010). https://doi.org/10.5516/NET.2010.42.6.620
  18. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Clarendon, Oxford (1989).
  19. H. W. Zheng, C. Shu and Y. T. Chew, "Lattice Boltzmann interface capturing method for incompressible flows," Phys. Rev. E, vol. 72, 056705 (2005). https://doi.org/10.1103/PhysRevE.72.056705
  20. Z. Guo, C. Zhen and B. Shi, "Discrete lattice effects on the forcing term in the lattice Boltzmann method," Phys. Rev. E, vol. 65, 046308 (2002). https://doi.org/10.1103/PhysRevE.65.046308
  21. M. Rudman, "Volume-Tracking methods for Interfacial Flow Calculations," Int. J. Numer. Methods Fluids, vol. 24, pp. 671-691 (1997). https://doi.org/10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
  22. Y. Renardy and M. Renardy, "PROST: A Parabolic Reconstruction of Surface Tension for the Volume-of-Fluid Method," J. Comput. Phys., vol. 183, pp. 400-421 (2002). https://doi.org/10.1006/jcph.2002.7190
  23. T. Lee and P. F. Fischer, "Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases," Phys. Rev. E, vol. 74, p. 046709 (2006). https://doi.org/10.1103/PhysRevE.74.046709
  24. X. Shan, "Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models," Phys. Rev. E, vol. 73, 047701 (2006). https://doi.org/10.1103/PhysRevE.73.047701
  25. J. U. Brackbill, D. B. Kothe and C. Zemach, "A Continuum Method for Modeling Surface Tension," J. Comput. Phys., vol. 100, pp. 335-354 (1992). https://doi.org/10.1016/0021-9991(92)90240-Y
  26. S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, "Accurate representation of surface tension using the level contour reconstruction method," J. Comput. Phys., vol. 203, pp. 493-516 (2005). https://doi.org/10.1016/j.jcp.2004.09.003
  27. S. Popinet, "An accurate adaptive solver for surface-tensiondriven interfacial flows," J. Comput. Phys., vol. 228, pp. 5838-5866 (2009). https://doi.org/10.1016/j.jcp.2009.04.042
  28. L. Amaya-Bower and T. Lee, "Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann," Comput. Fluids, vol. 39, pp. 1191-1207 (2010). https://doi.org/10.1016/j.compfluid.2010.03.003

Cited by

  1. Reduction of spurious velocity in the free-energy-based lattice Boltzmann method for large density ratio vol.10, pp.1, 2015, https://doi.org/10.1299/jtst.2015jtst0004
  2. Lattice Boltzmann method used to simulate particle motion in a conduit vol.65, pp.2, 2017, https://doi.org/10.1515/johh-2017-0008