DOI QR코드

DOI QR Code

채취 시기 및 지역에 따른 봉독의 성분 분석

Components According to Different Collecting Time and Location in Bee Venom

  • 한상미 (국립농업과학원 농업생물부) ;
  • 윤형주 (국립농업과학원 농업생물부) ;
  • 백하주 (경상북도보건환경연구원)
  • Han, Sang-Mi (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Yoon, Hyung-Joo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Baek, Ha-Ju (Gyeongsang Buk-Do Government Public Institute of Health and Environmental)
  • 투고 : 2012.05.08
  • 심사 : 2012.07.04
  • 발행 : 2012.09.01

초록

서양종 꿀벌 독의 채집시기와 지역에 따른 봉독의 성분 변화 및 약리효과에 미치는 영향을 검토하였다. 채집시기는 5월부터 9월까지, 채집지역은 전국 35개 지역으로부터 채취한 봉독을 대상으로 2010년과 2011년 2년에 걸쳐 동일 지역에서 동일한 방법으로 봉독을 채취하였다. 채취한 봉독은 액체크로마토그래피를 통해 멜리틴과 아파민 그리고 포스포리파아제 A2의 성분 함량을 분석하였다. 그 결과 채집시기와 지역에 따른 성분에 유의한 차이는 확인되지 않았다(One way-ANOVA, Duncan's test (${\alpha}$=0.05)). 봉독의 성분은 채집시기와 지역에 관계없이 멜리틴 $55.2{\pm}2.07%$, 아파민 $2.57{\pm}0.103%$ 그리고 포스포리파아제 A2는 $12.51{\pm}0.37%$을 차지하였다. 이상의 결과로부터 봉독은 채취시기에 따른 주요 성분은 차이를 갖고 있지 않았으며, 이는 꿀벌의 먹이, 사육온도 등 외부 환경이 봉독 분비에 영향을 주지 않는 것으로 사료되었다.

This study aims to investigate whether geographical variation affects the antibacterial component properties of honeybee (Apis mellifera L.) venom in Korea. Honeybee venom samples were collected from May to September, during 2010 and 2011, from 35 different sites, and were analyzed for major components, including melittin, apamin and phospholipase A2 were determined by a liquid chromatography using ammonium formate, acetonitrile, trifluoracetic acid. On average, melittin, apamin and phospholipase A2 were determined $55.2{\pm}2.07%$, $22.57{\pm}0.103%$, and $12.51{\pm}0.37%$, respectively. The ratio of the major components, including melittin, apamin and phospholipase A2 did not differ significantly according to flower or temperature during collections (One way-ANOVA, Duncan's test (${\alpha}$=0.05)).

키워드

참고문헌

  1. Ameratunga, R.V., R. Hawkins, R. Prestidge and J. Marbrook. 1995. A high efficiency method for purification and assay of bee venom phospholipase A2. Pathology. 27: 157-160. https://doi.org/10.1080/00313029500169782
  2. Fennell, J.F. W.H. Shipman and L.J. Cole. 1968. Antibacterial action of melittin, a polypeptide from bee venom. Proc. Soc. Exp. Biol. Med. 127: 707-710. https://doi.org/10.3181/00379727-127-32779
  3. Han, S.M., K.G. Lee, J.H. Yeo, H.Y. Kweon, B.S. Kim, J.M. Kim, H.J. Baek and S.T. Kim. 2007a. Antibacterial activity of the honey bee venom against bacterial mastitis pathogens infecting dairy cows. Int. J. Indust. Entomol. 14: 137-142.
  4. Han, S.M., K.G. Lee, J.H. Yeo, H.Y. Kweon, S.O. Woo, H.J. Baek and k.k. Park. 2007b. Inhibitory effect of bee venom against ultraviolet B induced MMP-1 and MMP-3 in human dermal fibroblasts. J. Apic. Res. 46: 94-98. https://doi.org/10.1080/00218839.2007.11101374
  5. Han, S.M., K.G. Lee, J.H. Yeo, S.J. Hwang, P.J. Chenoweth and S.C. Par. 2009. Effects of Bee Venom Treatment on Growth Performance of Young Pigs. Am. J. Chin. Med. 37: 833-842.
  6. Han, S.M., K.G. Lee, J.H. Yeo, H.J. Baek and K.K. Park. 2010a. Biological effects of treatment of an animal skin wound with honeybee (Apis melifera. L) venom. Plast. Reconstr. Surg. 64: e67-72.
  7. Han, S.M., K.G. Lee, J.H. Yeo, B.Y. Oh, B.S. Kim, W. Lee, H.J. Baek, S.T. Kim, S.J. Hwang and S.C. Pak. 2010b. Effects of honeybee venom supplementation in drinking water on growth performance of broiler chickens. Poultry Sci. 89: 2396-2400. https://doi.org/10.3382/ps.2010-00915
  8. Kim, H.W., Y.B. Kwon, T.W. Ham, D.H. Rho, S.Y. Yoon, H.J. Lee, H.J. Han, I.S. Yang, A.J. Beitz and J.H. Lee. 2003. Acupoint stimulation using bee venom attenuates formalin-induced pain behavior and spinal cord for expression in rats. J. Vet. Med. Sci. 65: 349-355. https://doi.org/10.1292/jvms.65.349
  9. Kokot, Z. J. and J. Matysiak. 2009. Simultaneous determination of major constituents of honeybee venom by LC-DAD. Chromato -graphia. 69: 1-5.
  10. Kwon, Y.B., H.J. Lee, H.J. Han, W.C. Mar, S.K. Kang, O.B. Yoon, A.J. Beitz and J.H. Lee. 2002. The water-soluble fraction of bee venom produces antinociceptive and anti-inflammatory effects on rheumatoid arthritis in rats. Life Sci. 71: 191-204. https://doi.org/10.1016/S0024-3205(02)01617-X
  11. Piek, T. 1986. Venoms of the Hymenoptera. pp 330-416. Academic press, London.
  12. Rybak-Chmielewska, H., and T. Szezesna. 2004. HPLC study of chemical composition of honeybee(Apis mellifera L.) venom. Journal of Apicultural Science. 48: 103-109.
  13. Somerfield, S.D., J.L. Stach, C. Mraz, F. Gervais and E. Skamene. 1984. Bee venom inhibits superoxide production by human neutrophils. Inflammation 8: 385-391. https://doi.org/10.1007/BF00918214
  14. Tu, W.C., C.C. Wu, H.L. Hsieh, C.Y. Chen and S.L. Hsu. 2008. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon. 52: 318-329. https://doi.org/10.1016/j.toxicon.2008.06.007
  15. Nentwig, L.K. 2003. Antimicrobial and cytolytic peptides of venomous arthropods. Cell. Mol. Life Sci. 60: 2651-2668. https://doi.org/10.1007/s00018-003-3106-8