DOI QR코드

DOI QR Code

초음파 처리에 따른 파밤나방(Spodoptera exigua)의 발육 및 교미행동 교란 분석

Analysis of Physiological Alterations in Development and Mating Behavior by Ultrasound Treatment in the Beet Armyworm, Spodoptera exigua

  • 김용균 (안동대학교 자연과학대학 생명자원과학과) ;
  • 손예림 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박복리 (안동대학교 자연과학대학 생명자원과학과)
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University) ;
  • Son, Ye-Rim (Department of Bioresource Sciences, Andong National University) ;
  • Park, Bok-Ri (Department of Bioresource Sciences, Andong National University)
  • 투고 : 2012.04.10
  • 심사 : 2012.05.10
  • 발행 : 2012.09.01

초록

일부 고주파 음파 처리가 파밤나방(Spodoptera exigua)의 생리변화를 유발시킨다. 이 연구는 초음파(${\geq}$ 20 kHz) 처리가 파밤나방 유충 섭식, 용 발육 및 성충 교미행동에 미치는 영향을 분석하였다. 초음파 처리는 5령충의 섭식 활동을 억제시켰다. 특별히 30 kHz 또는 45 kHz 초음파 처리를 받은 유충은 50% 이상의 섭식활동이 감소하였다. 이러한 초음파 처리를 받은 유충은 혈장의 주요 영양물질 함량이 변동되었다. 혈장 단백질은 처리 초음파의 주파수 증가에 따라 감소하였다. 그러나 혈당은 처리 초음파의 주파수 증가에 따라 증가하였다. 지질 함량은 30 kHz 처리까지는 증가하다가 이후 감소하였다. 파밤나방 5령의 혈구, 지방체 및 표피세포의 세 조직은 스트레스 관련 유전자들인 세 종류의 열충격단백질과 apolipophorin III를 발현시켰다. 그러나 초음파를 처리할 경우 일부 스트레스 관련 유전자들의 발현을 크게 억제시켰다. 초음파 처리는 또한 용발육을 억제시켜, 용기간을 연장시키고 성충으로 우화를 현격하게 낮추었다. 끝으로 초음파 처리는 성충의 교미행동을 억제시켜 암컷의 산란력을 뚜렷하게 낮추었다. 이러한 결과는 초음파가 파밤나방의 생리적 스트레스로 작용하고 있다는 것을 제시하고 있다.

Some high frequency sounds alter physiological processes of the beet armyworm, Spodoptera exigua. This study investigated the effect of ultrasound (${\geq}$ 20 kHz) on larval feeding, pupal development, and adult mating behavior of S. exigua. Ultrasound suppressed feeding behavior of fifth instar larvae, and 30 or 45 kHz treatment inhibited more than 50% of feeding activity. Larvae treated with ultrasound exhibited alterations in major nutrient compositions in the hemolymph plasma. Plasma protein levels decreased with an increase in ultrasound frequency. In contrast, sugar levels increased with an increase in ultrasound frequency. Lipid levels increased with an increase in ultrasound frequency up to 30 kHz and then decreased at treatments > 30 kHz. Hemocytes, the fat body, and epidermis expressed three heat shock proteins and apolipophorin III. Ultrasound treatment markedly inhibited expression of some stress-related genes. Ultrasound treatment also inhibited S. exigua pupal development by extending the pupal developmental period and preventing adult emergence. Last, ultrasound treatment significantly inhibited adult mating behavior, which resulted in a significant decrease in female fecundity. These results show that ultrasound is a physiological stress to S. exigua.

키워드

참고문헌

  1. Adamo, S.A., J.L. Roberts, R.H. Easy and N.W. Ross. 2008. Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. J. Exp. Biol. 211: 531-538. https://doi.org/10.1242/jeb.013136
  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 71: 248-254.
  3. Feder, M.E. and G.E. Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
  4. Gäde, G., K.H. Hoffmann and J.H. Spring. 1997. Hormonal regulation in insects: facts, gaps and future direction. Physiol. Rev. 77: 963-1032. https://doi.org/10.1152/physrev.1997.77.4.963
  5. Goh, H.G., S.G. Lee, B.P. Lee, G.M. Choi and J.H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29: 180-183.
  6. Halwani, A.E. and G.B. Dunphy. 1999. Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity. Dev. Comp. Immunol. 23: 563-570. https://doi.org/10.1016/S0145-305X(99)00037-3
  7. Halwani, A.E., D.F. Niven and G.B. Dunphy. 2000. Apolipophorin -III and the interactions of lipoteichoic acid with the immediate immune responses of Galleria mellonella. J. Invertebr. Pathol. 76: 233-241. https://doi.org/10.1006/jipa.2000.4978
  8. Hartl, F.U. and M. Hayar-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
  9. Haskell, P.T. 1957. Stridulation and associated behaviour in certain Orthoptera. I. Analysis of the stridulation of, and behaviour between males. Anim. Behav. 5: 139-148. https://doi.org/10.1016/S0950-5601(57)80020-3
  10. Jang, Y. 2011. Insect communication: concepts, channels and contexts. Kor. J. Appl. Entomol. 50: 383-393. https://doi.org/10.5656/KSAE.2011.09.0.52
  11. Khasar, S.G., P.G. Green and J.D. Leine. 2005. Repeated sound stress enhances inflammatory pain in the rat. Pain 116: 79-86. https://doi.org/10.1016/j.pain.2005.03.040
  12. Kim, J. 2012. Functional genomic analysis of antimetamorphic factors in a polydnavirus, Cotesia plutellae bracovirus. MS thesis. Andong National University, Andong, Korea.
  13. Kim, Y. and Y. Son. 2006. Parasitism of Cotesia plutellae alters morphological and biochemical characters of diamondback moth, Plutella xylostella. J. Asia-Pac. Entomol. 9: 37-42. https://doi.org/10.1016/S1226-8615(08)60273-3
  14. McIver, S.B. 1985. Mechanoreception. pp. 71-132. In Comprehensive insect physiology, biochemistry and pharmacology, vol. 6, eds. by G.A. Kerkut and L.I. Gilbert. Pergamon Press, Oxford, UK.
  15. Miller, L.A. and A. Surlykke. 2001. How some insects detect and avoid being eaten by bats: tactics and countertactics of prey and predator. BioScience. 51: 570-581. https://doi.org/10.1641/0006-3568(2001)051[0570:HSIDAA]2.0.CO;2
  16. Park, J., J. Seok, S.V. Prasad and Y. Kim. 2011a. Sound stress alters physiological processes in digestion and immunity and enhances insecticidal susceptibility of Spodoptera exigua. Kor. J. Appl. Entomol. 50: 39-46. https://doi.org/10.5656/KSAE.2011.02.0.002
  17. Park, J., Prasad, S.V. and Y. Kim. 2011b. Effects of sound stress on physiological processes of the American leafminer, Liriomyza trifolii, and proteomic analysis. Kor. J. Appl. Entomol. 50: 131-139. https://doi.org/10.5656/KSAE.2011.06.0.18
  18. Payne, R.S., K.D. Roeder and J. Wallman. 1966. Directional sensitivity of the ears of noctuid moths. J. Exp. Biol. 44: 17-31.
  19. Roeder, K.D. 1967. Turning tendency of moths exposed to ultrasound while in stationary flight. J. Insect Physiol. 13: 873-880. https://doi.org/10.1016/0022-1910(67)90051-0
  20. SAS Institute. 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
  21. Schulze, W. and J. Schul. 2001. Ultrasound avoidance behaviour in the bush cricket Tettigonia viridissima (Orthoptera: Tettigoniidae). J. Exp. Biol. 204: 733-740.
  22. Seok, J., T. Kang and Y. Kim. 2010. Sound stress induces developmental alterations and enhances insecticide susceptibility in the green peach aphid, Myzus persicae. Kor. J. Pestic. Sci. 14: 415-420.
  23. Sismondo, E. 1980. Physical characteristics of the drumming of Meconema thalassinum. J. Insect Physiol. 26: 209-212. https://doi.org/10.1016/0022-1910(80)90082-7
  24. Son, Y., J. Hwang and Y. Kim. 2012. Functional study of the gene encoding apolipophorin III in development and immune responses in the beet armyworm, Spodoptera exigua. J. Asia Pac. Entomol. 15: 106-112. https://doi.org/10.1016/j.aspen.2011.09.006
  25. Stephen, R.O. and J.C. Hartley. 1995. Sound production in crickets. J. Exp. Biol. 198: 2139-2152.
  26. Velki, M., D. Kodrik, J. Vecera, B.K. Hackenberger and R. Socha. 2011. Oxidative stress elicited by insecticides: a role for the adipokinetic hormone. Gen. Comp. Endocrinol. 172: 77-84. https://doi.org/10.1016/j.ygcen.2010.12.009
  27. Walter, S. and J. Buchner. 2002. Molecular chaperons-cellular machines for protein folding. Angew. Chem. Int. Ed. 41: 1098-1113. https://doi.org/10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9
  28. Weers, P.M.M. and R.O. Ryan. 2006. Apolipophorin III: role model apolipophorin. Insect Biochem. Mol. Biol. 36: 231-240. https://doi.org/10.1016/j.ibmb.2006.01.001
  29. Xu, Q., Q. Zou, H. Zheng, F. Zhang, B. Tang and S. Wang. 2011. Three heat shock proteins from Spodoptera exigua: Gene cloning, characterization and comparative stress response during heat and cold shocks. Comp. Biochem. Physiol. B 159: 92-102.
  30. Young, D. and H.C. Bennet-Clark. 1995. The role of the tymbal in cicada sound production. J. Exp. Biol. 198: 1001-1019.

피인용 문헌

  1. Effect of Stress Sound on the Development of the Black Soldier Fly, Hermetia illucens vol.52, pp.3, 2013, https://doi.org/10.5656/KSAE.2013.06.0.025