DOI QR코드

DOI QR Code

Radiosonde Sensors Bias in Precipitable Water Vapor From Comparisons With Global Positioning System Measurements

  • Received : 2012.01.06
  • Accepted : 2012.06.12
  • Published : 2012.09.15

Abstract

In this study, we compared the precipitable water vapor (PWV) data derived from the radiosonde observation data at Sokcho Observatory and the PWV data at Sokcho Global Positioning System (GPS) Observatory provided by Korea Astronomy and Space Science Institute, for the years of 2006, 2008, 2010, and analyzed the radiosonde seasonal, diurnal bias according to radiosonde sensor types. In the scatter diagram of the daytime and nighttime radiosonde PWV data and the GPS PWV data, dry bias was found in the daytime radiosonde observation as known in the previous study. Overall, the tendency that the wet bias of the radiosonde PWV increased as the GPS PWV decreased and the dry bias of the radiosonde PWV increased as the GPS PWV increased. The quantitative analysis of the bias and error of the radiosonde PWV data showed that the mean bias decreased in the nighttime except for 2006 winter, and in comparison for summer, RS92-SGP sensor showed the highest quality.

Keywords

References

  1. Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, et al., GPS meteorology: remote sensing of atmospheric water vapor using global positioning system, JGR, 97, 15787-15801 (1992). http://dx.doi.org/10.1029/92JD01517
  2. Bevis M, Chiswell S, Businger S, Herring TA, Bock Y, Estimating wet delays using numerical weather analyses and predictions, RaSc, 31, 477-488 (1996). http://dx.doi.org/10.1029/96RS00008
  3. Businger S, Chiswell SR, Bevis M, Duan J, Anthes RA, et al., The promise of GPS in atmospheric monitoring, BAMS, 77, 5-18 (1996). http://dx.doi.org/10.1175/1520-0477(1996)077%3C0005:TPOGIA%3E2.0.CO;2
  4. Dach R, Hugentobler U, Fridez P, Meindl M, Bernese GPS software version 5.0 (Printing Office of the University of Bern, Switzerland, 2007), 1-612.
  5. Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G, Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length, RaSc, 20, 1593-1607 (1985). http://dx.doi.org/10.1029/RS020i006p01593
  6. Duan J, Bevis M, Fang P, Bock Y, Chiswell S, et al., GPS meteorology: direct estimation of the absolute value of precipitable water, JApMe, 35, 830-838 (1996). http://dx.doi.org/10.1175/1520-0450(1996)035%3C0830:GMDEOT%3E2.0.CO;2
  7. Durre I, Williams CN, Yin X, Vose RS, Radiosonde-based trends in precipitable water over the northern hemisphere: an update, JGR, 114, D05112 (2009). http://dx.doi.org/10.1029/2008JD010989
  8. Elliott WP, Gaffen DJ, On the utility of radiosonde humidity archives for climate studies, BAMS, 72, 1507-1520 (1991). http://dx.doi.org/10.1175/1520-0477(1991)072%3C1507:OTUORH%3E2.0.CO;2
  9. Ferrare RA, Melfi SH, Whiteman DN, Evans KD, Schmidlin FJ, et al., A comparison of water vapor measurements made by Raman lidar and radiosondes, JAtOT, 12, 1177-1195 (1995). http://dx.doi.org/10.1175/1520-0426(1995)012%3C1177:ACOWVM%3E2.0.CO;2
  10. Hudson SR, Town MS, Walden VP, Warren SG, Temperature, humidity, and pressure response of radiosonde at low temperature, JAtOT, 21, 825-836 (2004). http://dx.doi.org/10.1175/1520-0426(2004)021%3C0825:THAPRO%3E2.0.CO;2
  11. Kim K-H, Kim Y-H, Chang D-E, The analysis of changma structure using radiosonde observational data from KEOP-2007. Part I. The assessment of the radiosonde data, Atmosphere, 19, 213-226 (2009).
  12. Kwon H-T, Iwabuchi T, Lim G-H, Comparison of precipitable water derived from ground-based GPS measurements with radiosonde observations over the Korean peninsula, J Meteor Soc Jpn, 85, 733-746 (2007). http://dx.doi.org/10.2151/jmsj.85.733
  13. Liou Y-A, Huang C-Y, Teng Y-T, Precipitable water observed by ground-based GPS receivers and microwave radiometry, EP&S, 52, 445-450 (2000).
  14. Liou Y-A, Teng Y-T, van Hove T, Liljegren JC, Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes, JApMe, 40, 5-15 (2001). http://dx.doi.org/10.1175/1520-0450(2001)040%3C0005:COPWOI%3E2.0.CO;2
  15. Lorenc AC, Barker D, Bell RS, Macpherson B, Maycock AJ, On the use of radiosonde humidity observations in mid-latitude NWP, MAP, 60, 3-17 (1996). http://dx.doi.org/10.1007/BF01029782
  16. Miloshevich LM, Paukkunen A, Vömel H, Oltmans SJ, Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements, JAtOT, 21, 1305-1327 (2004). http://dx.doi.org/10.1175/1520-0426(2004)021%3C1305:DAVOAT%3E2.0.CO;2
  17. Miloshevich LM, Vömel H, Whiteman DN, Lesht BM, Schmidlin FJ, et al., Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, JGR, 111, D09S10 (2006). http://dx.doi.org/10.1029/2005JD006083
  18. Motell C, Porter J, Foster J, Bevis M, Businger S, Comparison of precipitable water over Hawaii using AVHRR-based split-window techniques, GPS and radiosondes, IJRS, 23, 2335-2339 (2002). http://dx.doi.org/10.1080/01431160110069944
  19. Nakamura H, Seko H, Shoji Y, Dry biases of humidity measurements from the Vaisala RS80-A and Meisei RS2-91 radiosondes and from ground-based GPS, J Meteor Soc Jpn, 82, 277-299 (2004). http://dx.doi.org/10.2151/jmsj.2004.277
  20. Niell AE, Global mapping functions for the atmospheric delay at radio wavelengths, JGR, 101, 3227-3246 (1996). http://dx.doi.org/10.1029/95JB03048
  21. Ninomiya K, Dynamic meteorology essence (Sigma Press, Seoul, 2003), 77.
  22. Rocken C, van Hove T, Johnson J, Solheim F, Ware RH, et al., GPS/STORM-GPS sensing of atmospheric water vapor for meteorology, JAtOT, 12, 468-478 (1995). http://dx.doi.org/10.1175/1520-0426(1995)012%3C0468:GSOAWV%3E2.0.CO;2
  23. Song DS, Yun HS, Cho JM, Estimation of tropospheric water vapor using GPS observation, Korean J Geomat, 20, 215-222 (2002).
  24. Turner DD, Lesht BM, Clough JC, Liljegren JC, Revercomb HE, et al., Dry bias and variability in Vaisala RS80-H radiosondes: the ARM experience, JAtOT, 20, 117-132 (2003). http://dx.doi.org/10.1175/1520-0426(2003)020%3C0117:DBAVIV%3E2.0.CO;2
  25. Wang J, Cole HL, Carlson DJ, Miller ER, Beierle K, Corrections of humidity measurement errors from the Vaisala RS80 radiosonde applications to TOGA COARE data, JAtOT, 19, 981-1002 (2002). http://dx.doi.org/10.1175/1520-0426(2002)019%3C0981:COHMEF%3E2.0.CO;2
  26. Wang J, Zhang L, Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements, JCli, 21, 2218-2238 (2008). http://dx.doi.org/10.1175/2007JCLI1944.1

Cited by

  1. Comparative analysis of real-time precise point positioning zenith total delay estimates vol.20, pp.2, 2016, https://doi.org/10.1007/s10291-014-0427-z
  2. Determination and interpolation of parameters for precise conversion of GNSS wet zenith delay to precipitable water vapor in Turkey pp.2213-5820, 2018, https://doi.org/10.1007/s40328-018-0232-1