DOI QR코드

DOI QR Code

Antifungal Activity of Benzoic Acid from Bacillus subtilis GDYA-1 against Fungal Phytopathogens

Bacillus subtilis GDYA-1로부터 분리한 benzoic acid의 식물병원성 곰팡이에 대한 항균활성

  • Yoon, Mi-Young (Ecofriendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Seo, Kook-Hwa (Green Dynamics Corp.) ;
  • Lee, Sang-Heon (Green Dynamics Corp.) ;
  • Choi, Gyung-Ja (Ecofriendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Ecofriendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Ecofriendly New Materials Research Group, Korea Research Institute of Chemical Technology) ;
  • Cha, Byeong-Jin (Department of Plant Medicine, Chungbuk National University) ;
  • Kim, Jin-Cheol (Ecofriendly New Materials Research Group, Korea Research Institute of Chemical Technology)
  • 윤미영 (한국화학연구원 친환경신물질연구그룹) ;
  • 서국화 ((주)지디) ;
  • 이상현 ((주)지디) ;
  • 최경자 (한국화학연구원 친환경신물질연구그룹) ;
  • 장경수 (한국화학연구원 친환경신물질연구그룹) ;
  • 최용호 (한국화학연구원 친환경신물질연구그룹) ;
  • 차병진 (충북대학교 식물의학과) ;
  • 김진철 (한국화학연구원 친환경신물질연구그룹)
  • Received : 2012.05.25
  • Accepted : 2012.06.15
  • Published : 2012.06.30

Abstract

A bacterial strain antagonistic to some fungal phytopathogens was isolated from the stem of a Persimmon tree in Yeongam, Korea. This bacterium was identified as Bacillus subtilis by 16S rRNA gene sequencing and designated as B. subtilis GDYA-1. In in vivo experiment, the fermentation broth exhibited antifungal activities against Magnaporthe oryzae on rice plants, Phytophthora infestans on tomato plants, and Puccinia recondita on wheat plants. We isolated one antifungal compound and its chemical structure was determined by mass and $^1H$-NMR spectral data. The antifungal substance was identified as benzoic acid. It inhibited mycelial growth of M. oryzae, Rhizoctonia solani, Sclerotinia sclerotiorum, and P. capsici with minimum inhibition concentration (MIC) values, ranging from 62.5 to 125 ${\mu}g/ml$. Moreover, the substance effectively suppressed Phytophthora blight of red pepper caused by P. capsici in a pot experiment. To the author's knowledge, this is the first report on the antifungal activity of benzoic acid against phytopathogenic fungi. Benzoic acid and B. subtilis GDYA-1 may contribute to environmental-friendly protect crops from phytopathogenic fungi.

전라남도 영남지역의 감나무 줄기로부터 다양한 식물병에 대해 방제 효과를 보이는 세균을 분리하였다. 분리균주는 16S rRNA sequencing의 방법을 이용하여 동정한 결과 B. subtilis로 동정되었으며, B. subtilis GDYA-1로 명명하였다. In vivo 생물검정에서 GDYA-1 액체 배양액은 벼 도열병, 토마토 역병 및 밀 붉은녹병에 항균 활성을 보였다. 액체 배양액으로부터 한 개의 항균물질을 분리하였으며, 질량분석과 핵자기공명분석을 통해 분리한 물질은 benzoic acid로 동정되었다. Benzoic acid는 M. oryzae, R. solani, S. sclerotiorum 및 P. capsici의 균사생육을 62.5-125 ${\mu}g/ml$에서 완전히 억제하였다. 또한 benzoic acid는 고추 역병을 효과적으로 방제하는 것으로 나타났다. 본 연구에서 benzoic acid의 식물병원성곰팡이에 대한 항균활성을 처음으로 보고하는 바이다. Benzoic acid와 B. subtilis GDYA-1는 식물병원성곰팡이로부터 작물을 친환경적으로 보호하는데 기여할 것으로 기대된다.

Keywords

References

  1. Amborabe, B.-E., Fleurat-Lessard, P., Chollet, J.-F. and Roblin, G. 2002. Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure-activity relationship. Plant Physiol. Biochem. 40: 1051-1060. https://doi.org/10.1016/S0981-9428(02)01470-5
  2. Andres, L., Ming, D. S. and Towers, G. H. 2002. Antifungal activity of benzoic acid derivatives from Piper lanceaefolium. J. Nat. Prod. 65: 62-64. https://doi.org/10.1021/np010410g
  3. Cho, J.-Y., Choi, G. J., Lee, S.-W., Lim, H. K., Jang, K. S., Lim, C. H., Cho, K. Y. and Kim, J.-C. 2006. In vivo antifungal activity against various plant pathogenic fungi of curcuminoids isolated from Curcuma longa L. rhizomes. Plant Pathology J. 22: 94-96. https://doi.org/10.5423/PPJ.2006.22.1.094
  4. Heng, Z., Feng, Q. and Zhu, H. 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21: 5279-5280. https://doi.org/10.1093/nar/21.22.5279
  5. Hwang, B. K., Lim, S. W., Kim, B. S., Lee, J. Y. and Moon, S. S. 2001. Isolation and in vivo and in vitro antifungal activity of phenylacetic acid and sodium phenylacetate from Streptomyces humidus. Appl. Environ. Microbiol. 67: 3739-3745. https://doi.org/10.1128/AEM.67.8.3739-3745.2001
  6. Jung, H. K., Kim, J. R., Woo, S. M. and Kim, S. D. 2006. An auxin producing plant growth promoting rhizobacterium Bacillus subtilis AH18 which has siderophore-producing biocontrol activity. Kor. J. Microbiol. Biotechnol. 34: 94-100.
  7. Katz, E. and Bemain, A. 1977. The peptide antibiotics of Bacillus chemistry, biogenesis, and possible function. Bacteriol. Rev. 41: 449-474.
  8. Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57: 554-559. https://doi.org/10.1002/ps.318
  9. Kim, K. Y. and Kim, S. D. 1997. Biological control of Pyricularia oryzae blast spot with the antibiotic substances produced by Bacillus sp. KL-3. Korean J. Appl. Microbiol. Biotechnol. 25: 396-402. (In Korean)
  10. Kim, Y., Cho, J.-Y., Kuk, J.-H., Moon, J.-H., Cho, J.-I., Kim, Y.-C. and Park, K.-H. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-jang. Curr. Microbiol. 48: 312-317. https://doi.org/10.1007/s00284-003-4193-3
  11. Lago, J. H., Ramos, C. S., Casanova, D. C., Morandim, Ade, A., Bergamo, D. C., Cavalheiro, A. J., Bolzani Vda, S., Furlan, M., Guimaraes, E. F., Young, M. C. and Kato, M. J. 2004. Benzoic acid derivatives from Piper species and their fungitoxic acitivty against Cladosporium cladosporioides and C. sphaerospermun. J. Nat. Prod. 67: 178-1788.
  12. Lange, L., Breinbolt, J., Rasmussen, F. W. and Nielsen, R. I. 1993. Microbial fungicides-the natural choice. Pestic. Sci. 39: 155-160. https://doi.org/10.1002/ps.2780390209
  13. Lee, G. W., Kim, M. J., Park, J. S., Chae, J.-C., Soh, B. Y., Ju, J. E. and Lee, K.-J. 2011. Biological control of Phytophthora blight and anthracnose disease in red-pepper using Bacillus subtilis S54. Res. Plant Dis. 17: 86-89. (In Korean) https://doi.org/10.5423/RPD.2011.17.1.086
  14. Lee, H. J., Park, K. H., Shim, J. H., Park, R. D., Kim, Y. W., Hoon, H. B., Cho, J. Y., Kim, Y. C. and Kim, K. Y. 2005. Isolation and identification of low molecular weight compounds produced by Bacillus subtilis HJ927 and their biocontrol effect on the late blight of pepper (Capsicum annuum L.). Korean J. Soil Sci. Fer. 38: 25-31. (In Korean)
  15. Lee, J.-B., Shin, J.-H., Jang, J.-O., Shin, K.-S., Choi, C.-S., Kim, K.-W., Jo, M.-S., Jeon, C.-P., Kim, Y.-H. and Kwon, G.-S. 2007. Antifungal activity of Bacillus sp. AM-651 against Phytophthora capsici. Korean J. Microbiol. Biotechnol. 36: 227-232. (In Korean)
  16. Lee, S.-Y., Lee, S.-B., Kim, Y.-K. and Hwang, S. J. 2006. Biological control of garlic white rot accused by Sclereotium cepivorum and Sclereotium sp. using Bacillus subtilis 122 and Trichoderma harzianum 23. Res. Plant Dis. 12: 81-84. (In Korean) https://doi.org/10.5423/RPD.2006.12.2.081
  17. Leoffler, W. J., Tschen, S. M., Vanittanakom, N., Kugler, M., Knorpp, E., Hsieh, T. F. and Wu, T. G. 1986. Antifungal effects of bacilysin and fengymycin from Bacillus subtilis F29-3: a comparison with activities of other Bacillus antibiotics. J. Phytopathol. 115: 204-213. https://doi.org/10.1111/j.1439-0434.1986.tb00878.x
  18. Liang, L. 1998. Benzoic acid produced by selected species of lactic acid bacteria and Bacillus. Washington State University, Washington DC, USA. 134 pp.
  19. Nam, M., Choi, J., Kim, H. J., Lee, J., Lim, K., Kim, Y. G., Kim, H. T. and Jeun, Y.-C. 2010. Controlling activity of Bacillus subtilis KB-401 against cucumber powdery mildew caused by Sphaerotheca fusca. Korean J. Pestic. Sci. 14: 49-53. (In Korean)
  20. Nam, M., Shin, J. H., Choi, J., Hong, S., Kim, Y.-G. and Kim, H. T. 2009. Identification of Rhizo-bacterium inhibiting Diaporthe citri causing citrus melanose. Korean J. Pestic. Sci. 13: 332-335. (In Korean)
  21. Nascimento, G. G. F., Locatelli, J. and Freitas, P. C. 2000. Antibacterial activity of plant extracts and phytochemical on antibiotic-resistant bacteria. Braz. J. Microbiol. 31: 247-256.
  22. Neilands, J. B. 1984. Siderophores of bacteria and fungi. Microbiol. Sci. 1: 9-14.
  23. Omura, S. 1992. The search for bioactive compounds from microorganisms. Springer-Verlag. Tokyo, Japan. 388 pp.
  24. Park, K. 2011. Development of biopesticide and role of Bacillus spp. KIC News 14: 1-11. (In Korean)
  25. Park, K.-C., Lim, J.-H., Kim, S.-D. and Yi, Y.-K. 2009. Effects of phytophthora blight-antagonistic microorganism Bacillus subtilis AH18 and Bacillus licheniformis K11 on the soil microbial community. J. Appl. Biol. Chem. 52: 121-125. (In Korean) https://doi.org/10.3839/jabc.2009.021
  26. Paulitz, T. C. and Loper, J. E. 2001. Lack of a role for fluorescent siderphore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathol. 81: 930-935.
  27. Powel, K. A. and Jutsum, A. R. 1993. Technical and commercial aspects of biocontrol products. Pestic. Sci. 37: 315-321. https://doi.org/10.1002/ps.2780370403
  28. Schallmey, M., Singh, A. and Ward, O. P. 2004. Development in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  29. Scher, F. M. and Baker, R. 1982. Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathol. 72: 1567-1573. https://doi.org/10.1094/Phyto-72-1567
  30. Sieber, R., Bütikofer, U. and Bosset, J. O. 1995. Benzoic acid as a natural compound in cultured dairy products and cheese. J. Int. Dairy 5: I227-246. https://doi.org/10.1016/0958-6946(94)00005-A
  31. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  32. Thu Hang, N. T., Oh, S. O. and Kim, G. H. 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol. 21: 59-63. https://doi.org/10.5423/PPJ.2005.21.1.059
  33. Yang, S. Y., Park, M. R., Lim, I. S., Kim, Y. C., Yang, J. W. and Ryu, C.-M. 2011. 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovotrum SCC1 in tobacco. Eur. J. Plant Pathol. 129: 371-378. https://doi.org/10.1007/s10658-010-9687-9
  34. Yoon, M.-Y., Lim, Y. S., Ryu, S. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Cha, B., Han, S.-S. and Kim, J.-C. 2011. In vitro and in vivo antifungal activities of decursin and decursinol angelate isolated from Angelica gigas against Magnaporthe oryzae, the causal agent of rice blast. Pestic. Biochem. Physiol. 101: 118-124. https://doi.org/10.1016/j.pestbp.2011.08.013
  35. Woo, S. M., Woo, J. U. and Kim, S. D. 2007. Purification and characterization of the siderophore from Bacillus licheniformis K11, a multi-functional plant growth promoting rhizobacterium. Korean J. Microbial. Biotechnol. 35: 128-134. (In Korean)

Cited by

  1. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens vol.110, 2017, https://doi.org/10.1016/j.micpath.2017.07.027
  2. Screening of Antagonistic Bacteria having Antifungal Activity against Various Phytopathogens vol.42, pp.4, 2014, https://doi.org/10.4489/KJM.2014.42.4.333
  3. Rhizoctonia solani and Bacterial Inoculants Stimulate Root Exudation of Antifungal Compounds in Lettuce in a Soil-Type Specific Manner vol.7, pp.2, 2017, https://doi.org/10.3390/agronomy7020044
  4. Isolation of Antifungal Compound and Biocontrol Potential of Lysobacter antibioticus HS124 against Fusarium Crown Rot of Wheat vol.49, pp.4, 2016, https://doi.org/10.7745/KJSSF.2016.49.4.393
  5. Isolation and identification of N-butyl-tetrahydro-5-oxofuran-2-carboxamide produced byBacillussp. L60 and its antifungal activity vol.57, pp.3, 2017, https://doi.org/10.1002/jobm.201600481