DOI QR코드

DOI QR Code

BiFeO3-based Lead-free Piezoelectric Ceramics

비스무스 페라이트계 무연 압전 세라믹스

  • Choi, Jin-Hong (Department of Semiconductor & Display Engineering, Hoseo University) ;
  • Kim, Hyun-Ah (Department of Materials Science & Engineering, Hoseo University) ;
  • Han, Seung-Ho (Electronic Materials and Device Research Center, Korea Electronics Technology Institute) ;
  • Kang, Hyung-Won (Electronic Materials and Device Research Center, Korea Electronics Technology Institute) ;
  • Lee, Hyeung-Gyu (Electronic Materials and Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Jeong-Seog (Department of Semiconductor & Display Engineering, Hoseo University) ;
  • Cheon, Chae-Il (Department of Semiconductor & Display Engineering, Hoseo University)
  • 최진홍 (호서대학교 반도체 디스플레이공학과) ;
  • 김현아 (호서대학교 신소재공학과) ;
  • 한승호 (전자부품연구원 전자소재응용연구센터) ;
  • 강형원 (전자부품연구원 전자소재응용연구센터) ;
  • 이형규 (전자부품연구원 전자소재응용연구센터) ;
  • 김정석 (호서대학교 반도체 디스플레이공학과) ;
  • 천채일 (호서대학교 반도체 디스플레이공학과)
  • Received : 2012.07.05
  • Accepted : 2012.07.26
  • Published : 2012.09.01

Abstract

Recently, many lead-free piezoelectric materials have been investigated for the replacement of existing Pb-based piezoelectric ceramics because of globally increasing environmental interest. There has been remarkable improvement in piezoelectric properties of some lead-free ceramics such as $(Bi,Na)TiO_3-(Bi,K)TiO_3-BaTiO_3$, $(Na,K)NbO_3-LiSbO_3$, and so on. However, no one still has comparable piezoelectric properties to lead-based materials. Therefore, new lead-free piezoelectric ceramics are required. $BiFeO_3$ has a rhombohedrally distorted perovskite structure at room temperature and a very high Curie temperature ($T_C$= 1,100 K). And a very large electric polarization of 50 ~ 60 ${\mu}C/cm^2$ has been reported both in epitaxial thin film and single crystal $BiFeO_3$. Therefore, a high piezoelectric effect is expected also in a $BiFeO_3$ ceramics. The recent research activities on $BiFeO_3$ or $BiFeO_3$-based solid solutions are reviewed in this article.

Keywords

References

  1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 442, 7595 (2006).
  2. G. Catalan and J. F. Scott, Adv. Mater., 21, 2463 (2009). https://doi.org/10.1002/adma.200802849
  3. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 299, 1719 (2003). https://doi.org/10.1126/science.1080615
  4. T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S. W. Cheong, Science, 324, 63 (2009). https://doi.org/10.1126/science.1168636
  5. F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J. M. Liu, and Z. F. Ren, Appl. Phys. Lett., 89, 102506 (2006). https://doi.org/10.1063/1.2345825
  6. T. J. Park, Y. Mao, and S. S. Wong, Chem. Comm., 23, 2708 (2004).
  7. X. Y. Zhang, C. W. Lai, X. Zhao, D. Y. Wang, and J. Y. Dai, Appl. Phys. Lett., 87, 143102 (2005). https://doi.org/10.1063/1.2076437
  8. S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, J. Am. Ceram. Soc., 88, 1349 (2005). https://doi.org/10.1111/j.1551-2916.2005.00306.x
  9. T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett., 7, 766 (2007). https://doi.org/10.1021/nl063039w
  10. J. T. Han, Y. H. Huang, X. J. Wu, C. L. Wu, W. Wei, B. Peng, W. Huang, and J. B. Goodenough, Adv. Mater., 18, 2145 (2006). https://doi.org/10.1002/adma.200600072
  11. S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, J. S. Kim, and C. I. Cheon, Ceram. Int., 36, 1365 (2010). https://doi.org/10.1016/j.ceramint.2010.01.020
  12. S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, C. I. Cheon, and J. S. Kim, J. Nanosci. Nanotechnol., 10, 6650 (2010). https://doi.org/10.1166/jnn.2010.3055
  13. D. Lebeugle, D. Colson, A. Forget, and M. Viret, Appl. Phys. Lett., 91, 022907 (2007). https://doi.org/10.1063/1.2753390
  14. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev., B71, 014113 (2005).
  15. M. Kumar, K. L. Yadav, and G. D. Varma, Mater. Lett., 62, 1159 (2008). https://doi.org/10.1016/j.matlet.2007.07.075
  16. Y. P. Wang, L. Zhou, M. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Appl. Phys. Lett., 84, 1731 (2004). https://doi.org/10.1063/1.1667612
  17. A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, J. Appl. Phys., 97, 093903 (2005). https://doi.org/10.1063/1.1881775
  18. G. L. Yuan, S. W. Or, Y. P. Wang, Z. G. Liu, and J. M. Liu, Solid State Commun.,. 138, 76 (2006). https://doi.org/10.1016/j.ssc.2006.02.005
  19. G. L. Yuan, Y. Yang, and S. W. Or, Appl. Phys. Lett., 91, 122907 (2007). https://doi.org/10.1063/1.2786013
  20. R. Mazumder, D. Chakravarty, D. Bhattacharya, and A. Sen, Mater. Res. Bull., 44, 555 (2009). https://doi.org/10.1016/j.materresbull.2008.07.017
  21. J. C. Chen and J. M. Wu, Appl. Phys. Lett., 91, 182903 (2007). https://doi.org/10.1063/1.2798256
  22. S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimirun, and S. Maensiri, Appl. Phys. Lett., 94, 062904 (2009). https://doi.org/10.1063/1.3078825
  23. A. Y. Kim, S. H. Han, H. W. Kang, H. G. Lee, J. S. Kim, and C. I. Cheon, Ceram. Int., 38, S397 (2012). https://doi.org/10.1016/j.ceramint.2011.05.019
  24. W. Luo, D. Wang, F. Wang, T. Liu, J. Cai, L. Zhang and Y. Liu, Appl. Phys. Lett. 94, 202507 (2009). https://doi.org/10.1063/1.3139780
  25. S. J. Kim, S. H. Han, H. G. Kim, A. Y. Kim, J. S. Kim, and C. I. Cheon, J. Kor. Phys. Soc., 56, 439 (2010). https://doi.org/10.3938/jkps.56.439
  26. S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, and N. B. Ming, Appl. Phys. Lett., 87, 262907 (2005). https://doi.org/10.1063/1.2147719
  27. Y. Yao, B. Ploss, C. L. Mak, and K. H. Wong, Appl. Phys., A99, 211 (2010). https://doi.org/10.1007/s00339-009-5499-1
  28. T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, J. Appl. Phys., 108, 074107 (2010). https://doi.org/10.1063/1.3490249
  29. Y. Jun, W. Moon, C. Chang, H. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, and S. Hing, Solid State Commun., 135, 133 (2005). https://doi.org/10.1016/j.ssc.2005.03.038
  30. M. Kumar, A. Srinivas, and S. V. Suryanarayana, J. Appl. Phys., 87, 855 (2000). https://doi.org/10.1063/1.371953
  31. J. S. Kim, C. I. Cheon, C. H. Lee, and P. W. Jang, J. Appl. Phys., 96, 468 (2004). https://doi.org/10.1063/1.1755430
  32. S. O. Leontsev and R. E. Eitel, J. Am. Ceram. Soc., 92, 2957 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x
  33. Y. J. Lee, J. S. Kim, S. H. Han, H. W. Kang, H. G. Lee, and C. I. Cheon, J. Kor. Phys. Soc., "submitted".
  34. L. W. Martin, S. P. Crane, Y .H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, J. Phys. Condens. Matter., 20, 434220 (2008). https://doi.org/10.1088/0953-8984/20/43/434220
  35. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, Phys. Rev., B77, 014110 (2008). https://doi.org/10.1103/PhysRevB.77.014110
  36. M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, Russian, Journal of General Chemistry, 73, 1676 (2003). https://doi.org/10.1023/B:RUGC.0000018640.30953.70
  37. A. Y. Kim, Y. J. Lee, J. S. Kim, S. H. Han, H. W. Kang, H. G. Lee, and C. I. Cheon, J. Kor. Phys. Soc., 60, 83 (2012). https://doi.org/10.3938/jkps.60.83
  38. T. Leist, W. Jo, T. Comyn, A. Bell, and J. Roedel, Jpn. J. Appl. Phys., 48, 120205 (2009). https://doi.org/10.1143/JJAP.48.120205
  39. V. F. Freitasw, I. A. Santos, E. Botero, B. M. Fraygola, D. Garcia, and J. A. Eiras, J. Am. Ceram. Soc., 94, 754 (2011). https://doi.org/10.1111/j.1551-2916.2010.04118.x
  40. S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Appl. Phys. Lett., 92, 202904 (2008). https://doi.org/10.1063/1.2931706
  41. Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 44, 5040 (2005). https://doi.org/10.1143/JJAP.44.5040
  42. H. Matsuo, Y. Noguchi, M. Miyayama, M. Suzuki, and M. A. Watanabe J. Appl. Phys., 108, 104103 (2010). https://doi.org/10.1063/1.3506717
  43. T. Ozaki, Hiroki M., Y. Noguchi, M. Miyayama, and S. Mori, Jpn. J. Appl. Phys., 49, 09MC05 (2010). https://doi.org/10.1143/JJAP.49.09MC05
  44. J. H. Choi, H. A. Kim, S. H. Han, H. W. Kang, H. G. Lee, J. S. Kim, and C. I. Cheon, The 12th Japan-Korea International Seminar on Ceramics (Okayama, Japan, 2011), EC-O-3.
  45. S. O. Leontsev and R. E. Eitel, J. Mater. Res., 26, 9 (2011). https://doi.org/10.1557/jmr.2010.44