DOI QR코드

DOI QR Code

Gaussian Model Optimization using Configuration Thread Control In CHMM Vocabulary Recognition

CHMM 어휘 인식에서 형상 형성 제어를 이용한 가우시안 모델 최적화

  • 안찬식 (광운대학교 컴퓨터공학과) ;
  • 오상엽 (가천대학교 IT대학 인터랙티브미디어학과)
  • Received : 2012.07.19
  • Accepted : 2012.08.20
  • Published : 2012.08.31

Abstract

In vocabulary recognition using HMM(Hidden Markov Model) by model for the observation of a discrete probability distribution indicates the advantages of low computational complexity, but relatively low recognition rate has the disadvantage that require sophisticated smoothing process. Gaussian mixtures in order to improve them with a continuous probability density CHMM (Continuous Hidden Markov Model) model is proposed for the optimization of the library system. In this paper is system configuration thread control in recognition Gaussian mixtures model provides a model to optimize of the CHMM vocabulary recognition. The result of applying the proposed system, the recognition rate of 98.1% in vocabulary recognition, respectively.

HMM(Hidden Markov Model)을 이용한 어휘 인식에서 모델들의 대한 관측 확률이 이산적인 분포를 나타내며 계산량이 적은 장점이 있지만 인식률이 상대적으로 낮고 정교한 스무딩 과정이 필요한 단점이 있다. 이를 개선하기 위해 가우시안 믹스쳐 연속 확률 밀도를 이용한 CHMM(Continuous Hidden Markov Model) 모델 최적화를 위한 시스템을 제안한다. 본 논문의 시스템은 CHMM 어휘 인식에서 가우시안 믹스쳐 모델을 최적화한 인식 모델을 형상 형성 시스템 지원에 의해 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 어휘 인식률에서 98.1%의 인식률을 나타내었다.

Keywords