DOI QR코드

DOI QR Code

A boundary-volume integral equation method for the analysis of wave scattering

  • Touhei, Terumi (Department of Civil Engineering, Tokyo University of Science)
  • 투고 : 2012.05.10
  • 심사 : 2012.06.13
  • 발행 : 2012.06.25

초록

A method for the analysis of wave scattering in 3-D elastic full space is developed by means of the coupled boundary-volume integral equation, which takes into account the effects of both the boundary of inclusions and the uctuation of the wave field. The wavenumber domain formulation is used to construct the Krylov subspace by means of FFT. In order to achieve the wavenumber domain formulation, the boundary-volume integral equation is transformed into the volume integral equation. The formulation is also focused on this transform and its numerical implementation. Several numerical results clarify the accuracy and effectiveness of the present method for scattering analysis.

키워드

참고문헌

  1. Aki, K. and Richards, P.G. (2002), Quantitative seismology, 2nd Ed., U.S.A. University science books.
  2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J.M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C. and Van der Vorst, H. (1994), Templates for the solution of linear systems: building blocks for iterative methods, SIAM.
  3. Brebbia, C.A. and Walker, S. (1980), Boundary element techniques in engineering, London, Newness-Butterworth.
  4. Colton, D. and Kress, R. (1983), Integral equation methods in scattering theory, New York, John Wiley & Sons, Inc.
  5. Colton, D. and Kress, R. (1998), Inverse acoustic and electromagnetic scattering theory, Berlin, Springer.
  6. De Zaeytijd, J., Bogaert, I. and Franchois, A. (2008), "An efficient hybrid MLFMA-FFT solver for the volume integral equation in case of sparse 3D inhomogeneous dielectric scatterers", J. Comput. Phys., 227(14), 7052-7068. https://doi.org/10.1016/j.jcp.2008.04.009
  7. Guzina, B.B., Fata, S.N. and Bonnet, M. (2003), "On the stress-wave imaging of cavities in a semi-infinite solid", Int. J. Solids Struct., 40(6), 1505-1523. https://doi.org/10.1016/S0020-7683(02)00650-9
  8. Ikebe, T. (1960), "Eigenfunction expansion associated with the schroedinger operators and their applications to scattering theory", Arch. Ration. Mech. Anal., 5(1), 1-34. https://doi.org/10.1007/BF00252896
  9. Manolis, G.D., Dineva, P.S. and Rangelov, T.V. (2004), "Wave scattering by cracks in inhomogeneous continua using BIEM", Int. J. Solids Struct., 41(14), 3905-3927. https://doi.org/10.1016/j.ijsolstr.2004.02.030
  10. Markoe, A. (2006), Analytic tomography, New York, Cambridge University Press.
  11. Touhei, T. (2009), "Generalized fourier transform and its application to the volume integral equation for elasticwave propagation in a half space", Int. J. Solids Struct., 46(1), 52-73. https://doi.org/10.1016/j.ijsolstr.2008.08.027
  12. Touhei, T., Kiuchi, T. and Iwasaki, K. (2009), "A fast volume integral equation method for the direct/inverse problem in elastic wave scattering phenomena", Int. J. Solids Struct., 46(21), 3860-3872. https://doi.org/10.1016/j.ijsolstr.2009.07.010
  13. Touhei, T. (2011), "A fast method for the volume integral equation for elastic wave propagation in a half space", Int. J. Solids Struct., 48, 3194-3208. https://doi.org/10.1016/j.ijsolstr.2011.07.013
  14. Yang, J., Abubaker, A., van den Berg, P.M., Habashy, T.M., and Reitich, F. (2008), "A CG-FFT approach to the solution of a stress-velocity formulation of three-dimensional scattering problems", J. Comput. Phys. 227(24), 10018-10039. https://doi.org/10.1016/j.jcp.2008.07.027