DOI QR코드

DOI QR Code

Effect of the thickness on the mixed mode crack front fields

  • Khan, Shafique M.A. (Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals)
  • 투고 : 2011.08.27
  • 심사 : 2012.05.01
  • 발행 : 2012.06.10

초록

Results pertaining to 3D investigations on the effect of the thickness on the stress fields at the crack front are presented. A 3D finite element analysis is performed using a modified single edge-notched tension specimen configuration, with an inclined crack to include mixed mode I-II. A technique to mesh the crack front (3D) with singular finite elements in ANSYS without using third party software is introduced and used in this study. The effect of the specimen thickness is explicitly investigated for six thicknesses ranging from 1 to 32 mm. In addition, three crack inclination angles, including pure Mode-I, are used to study the effect of mixed-mode I-II fracture. An attempt is made to correlate the extent of a particular stress state along the crack front to thickness. In addition, ${\sigma}_{zz}/{\nu}({\sigma}_{xx}+{\sigma}_{yy})$ contours at the crack front are presented as a useful means to analyze the stress state.

키워드

참고문헌

  1. Alturi, S.N., Nakagaki, M., Kathiresan, K., Rhee, H.C. and Chen, W.H. (1978), "Hybrid finite element models for linear and nonlinear fracture analysis", Proceedings of the International Conference on Numerical Methods in Fracture Mechanics, Ed. Owen, D.R.J., editor. Swansea, UK.
  2. Ayhan, A.O. (2007) "Mixed mode stress intensity factors for deflected and inclined corner cracks in finitethickness plates", Int. J. Fatigue, 29, 305-317. https://doi.org/10.1016/j.ijfatigue.2006.03.006
  3. Banks, T.M. and Garlick, A. (1984), "The form of crack tip plastic zones", Eng. Frac. Mech., 19(3), 571-581. https://doi.org/10.1016/0013-7944(84)90012-2
  4. Benzley, S.E. (1974) "Representation of singularities with isoparametric finite elements", Int. J. Numer. Meth. Eng., 8, 537-545. https://doi.org/10.1002/nme.1620080310
  5. Gifford, Jr. L.N. and Hilton, P.D. (1978), "Stress intensity factors by enriched finite elements", Eng. Frac. Mech., 10, 485-496. https://doi.org/10.1016/0013-7944(78)90059-0
  6. Jendoubi, K., Ranganathan, N. and Merah, N. (1991), "Effect of thickness on elasto-plastic deformation and hysteretic energy dissipated at crack tip", J. Test. Eval., 19(3), 201-209. https://doi.org/10.1520/JTE12557J
  7. Khan, S.M.A. Khraisheh, M.K. (2004), "A new criterion for mixed mode fracture initiation based on the crack tip plastic core region", Int. J. Plasticity, 20, 55-84. https://doi.org/10.1016/S0749-6419(03)00011-1
  8. Kim, K., Kim, K. and Shim, C. (2003), "A study on the measurement of plastic zone and crack growth length at the crack tip under cyclic loading using ESPI system", Struct. Eng. Mech., 15, 367-378. https://doi.org/10.12989/sem.2003.15.3.367
  9. Kotousov, A. (2007), "Fracture in plates of finite thickness", Int. J. Solids Struct., 44, 8259-8273. https://doi.org/10.1016/j.ijsolstr.2007.06.011
  10. Maccagno, T.M. and Knott, J.F. (1989), "The fracture behavior of PMMA in mixed modes I and II", Eng. Frac. Mech., 34(1), 65-86. https://doi.org/10.1016/0013-7944(89)90243-9
  11. Mishra, S.C. and Parida, B.K. (1985), "Determination of the size of crack-tip plastic zone in a thin sheet under uniaxial loading", Eng. Frac. Mech., 22(3), 351-357. https://doi.org/10.1016/0013-7944(85)90136-5
  12. Nakamura, T. and Parks, D.M. (1988), "Three-dimensional stress field near the crack front of a thin elastic plate", J. Appl. Mech., 55, 805-813. https://doi.org/10.1115/1.3173725
  13. Nakamura, T. and Parks, D.M. (1989), "Antisymmetrical 3D stress field near the crack front of a thin elastic plate", Int. J. Solids Struct., 25(12), 1411-1426. https://doi.org/10.1016/0020-7683(89)90109-1
  14. Pian, T.H.H. and Moriya, K. (1978), "Three dimensional fracture analysis by assumed stress hybrid elements", Proceedings of the International Conference on Numerical Methods in Fracture Mechanics, Ed. Owen, D.R.J., Swansea, UK.
  15. Prawoto, Y., Idris, R., Kamsah, N. and Tamin, N. (2009), "Two-dimensional modeling to compute plastic zone in front of compact tension sample of a multiphase material", Comput. Mater. Sci., 47, 482-490. https://doi.org/10.1016/j.commatsci.2009.09.014
  16. Prawoto, Y., Idris, R., Kamsah, N. and Tamin, N. (2011), "Three-dimensional modeling to compute plastic zone in front of crack in compact tension sample of multiphase material", Comput. Mater. Sci., 50, 1499-1503. https://doi.org/10.1016/j.commatsci.2010.12.006
  17. Ranganathan, N., Jendoubi, K. and Merah, N. (1994), "Experimental characterization of the elastic-plastic strain fields at the crack tip due to cyclic loading", J. Eng. Mat. Tech., 116, 187-192. https://doi.org/10.1115/1.2904271
  18. Sevcik, M., Hutar, P., Zouhar, M. and Nahlik, L. (2011), "Numerical estimation of the fatigue crack front shape for a specimen with finite thickness", Int. J. Fracture. (in press)
  19. Shlyannikov, V.N. and Tumnov, A.V. (2011), "Mixed mode 3D stress fields and crack front singularities for surface flaw", Procedia Eng., 10, 1133-1138. https://doi.org/10.1016/j.proeng.2011.04.187
  20. Subramanya, H.Y., Viswanath, S. and Narasimhan, R. (2005), "A three-dimensional numerical study of mixed mode (I and II) crack tip fields in elastic-plastic solids", Int. J. Frac., 136, 167-185. https://doi.org/10.1007/s10704-005-5422-5
  21. Theocaris, P.S. and Andrianopoulos, N.P. (1982), "The Mises elastic-plastic boundary as the core region in fracture criteria", Eng. Frac. Mech., 16(3), 425-432. https://doi.org/10.1016/0013-7944(82)90120-5
  22. Wang, J., Guo, W.L. and Shen, Y.P. (1996), "The shape and size of crack tip plastic zones under triaxial stress constraint", Int. J. Frac., 80, R61-R68. https://doi.org/10.1007/BF00018517

피인용 문헌

  1. 3D effects on crack front core regions, stress intensity factors and crack initiation angles vol.50, pp.9, 2013, https://doi.org/10.1016/j.ijsolstr.2013.01.019
  2. Three-Dimensional Constraint Effects on the Slitting Method for Measuring Residual Stress vol.135, pp.3, 2013, https://doi.org/10.1115/1.4023849