DOI QR코드

DOI QR Code

Genetic Diversity and Spatial Genetic Structure of Dwarf Stone Pine in Daecheongbong Area, Mt. Seorak

설악산 대청봉 눈잣나무(Pinus pumila (Pall.) Regel) 집단의 유전다양성과 공간적 유전구조

  • Song, Jeong-Ho (Division of Forest Genetic Resources, Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Lim, Hyo-In (Division of Forest Genetic Resources, Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Kyung-Nak (Division of Forest Genetic Resources, Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Jang, Kyung-Hwan (Division of Forest Genetic Resources, Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Yong-Pyo (Division of Forest Genetic Resources, Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 송정호 (국립산림과학원 산림유전자원부 산림유전자원과) ;
  • 임효인 (국립산림과학원 산림유전자원부 산림유전자원과) ;
  • 홍경낙 (국립산림과학원 산림유전자원부 산림유전자원과) ;
  • 장경환 (국립산림과학원 산림유전자원부 산림유전자원과) ;
  • 홍용표 (국립산림과학원 산림유전자원부 산림유전자원과)
  • Received : 2012.03.08
  • Accepted : 2012.06.26
  • Published : 2012.08.29

Abstract

Pinus pumila, which occurs in the northeast Asia, is found limitedly in Daecheongbong area of Mt. Seorak in the South Korea. This population was chosen to study spatial pattern, genetic diversity and spatial genetic structure. There were 48 polymorphic and 30 monomorphic I-SSR markers. A total of 65 individuals which distributed in the study site (40 m ${\times}$ 70 m) showed weakly aggregate distribution (Aggregate Index = 0.871). A total of 40 genets were observed from 65 individuals through I-SSR genotype comparison. Proportion of distinguishable genotype (G/N), genotype diversity (D) and genotype evenness (E) were 61.5%, 0.977 and 0.909, respectively. In spite of the small number and the limited distribution, Shannon's diversity index (I = 0.567) was relatively high as compared with those of other plant species. Spatial autocorrelation using Tanimoto's distance showed that the genetic patch was established within 12 m. Based on Mantel tests, there was relatively low correlation between genetic distance and geographic distance. Therefore, it seems the P. pumila population was formed by many parent trees in early stage. For ex situ genetic conservation of P. pumila, the sampling strategy is efficient at least above 12 m between individual trees.

눈잣나무는 동북아시아가 주 분포지로 남한에서는 설악산 고산지역에만 제한적으로 분포한다. 본 연구는 설악산 눈잣나무 집단의 분포형태와 특성, 유전다양성 및 공간분포에 따른 유전구조를 파악하였다. 선발된 9개 I-SSR primer에서 총 78개 I-SSR 증폭산물을 얻었으며, 30개의 단형성 증폭산물을 제외한 48개의 증폭산물을 분석에 이용하였다. 조사구(40 m ${\times}$ 70 m)에는 눈잣나무 65개체가 자생하고 있었으며, 채집한 눈잣나무의 위치자료를 바탕으로 군집지수를 계산한 결과 약하게 집중분포(Aggregation Index = 0.871)하고 있음을 확인하였다. 모든 개체에 대하여 I-SSR 유전자형을 비교한 결과, 65개체 중 유전자형이 서로 다른 40개의 genet이 식별되었다. 유전자형 비율(G/N)은 61.5%, 유전자형 다양성(D)은 0.977, 유전자형 균등도(E)는 0.909로 각각 나타났다. Shannon의 다양성지수(I = 0.567)는 적은 개체수와 제한적 분포에도 불구하고 다른 수종들에 비해 비교적 높은 유전다양성을 나타났다. 공간적 자기상관 분석을 실시한 결과 조사지역 내의 눈잣나무 집단은 12 m 이내에서 유전적으로 유사한 군락구조를 갖고 있는 것으로 나타났다. Mantel 검정 결과 유전적 거리와 지리적 거리간에 낮은 상관관계를 나타내 눈잣나무 집단이 초기에 여러 개의 모수에서 형성된 것으로 추정되었다. 본 연구결과 설악산 눈잣나무 집단의 현지외 유전자 보존을 위한 표본추출 전략은 최소 12 m 이상의 거리를 두는 것이 효율적인 것으로 나타났다.

Keywords

References

  1. Anderson, P.M., A.V. Lozhkin, T.B. Solomatkina and T.A. Brown. 2010. Paleoclimatic implications of glacial and postglacial refugia for Pinus pumila in western Beringia. Quaternary Res. 73(2):269-276. https://doi.org/10.1016/j.yqres.2009.09.008
  2. Ayres, D.R. and F.J. Ryan. 1997. The clonal and population structure of a rare endemic plant, Wyethia reticulata (Asteraceae): allozyme and RAPD analysis. Mol. Ecol. 6(8):761-772. https://doi.org/10.1046/j.1365-294X.1997.00248.x
  3. Bachmann, K. 1994. Molecular markers in plant ecology. New Phytol. 126:403-418. https://doi.org/10.1111/j.1469-8137.1994.tb04242.x
  4. Choi, H.S., K.N. Hong, J.M. Chung, B.Y. Kang and W.W. Kim. 2004a. Genetic diversity and spatial genetic structure of Empetrum nigrum var. japonicum in Mt. Halla, South Korea. Jour. Korean For. Soc. 93(3):175-180 (in Korean).
  5. Choi, H.S., K.N. Hong, J.M. Chung and W.W. Kim. 2004b. Spatial genetic sturucture and genetic diversity of a rare endemic Juniperus chinensis var. sargentii in Mt. Halla, Korea. Korean J. Ecol. 27(5):257-261 (in Korean). https://doi.org/10.5141/JEFB.2004.27.5.257
  6. Chung, M.G. and E.K. Epperson. 2000. Clonal and spatial genetic structure in Eurya emarginata (Theaceae). Heredity 84(2):170-177. https://doi.org/10.1046/j.1365-2540.2000.00644.x
  7. Clark, P.J. and F.C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35(4):445-453. https://doi.org/10.2307/1931034
  8. Degen, B., H. Caron, E. Bandou, L. Maggia, M.H. Chevallier, A. Leveau and A. Kremer. 2001a. Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity 87(4):497-507. https://doi.org/10.1046/j.1365-2540.2001.00942.x
  9. Degen, B., R. Petit and A. Kremer. 2001b. SGS-Spatial Genetic Software: A computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. J. Hered. 92(5):447-448. https://doi.org/10.1093/jhered/92.5.447
  10. Ellstrand, N.C. and M.L. Roose. 1987. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74(1):123-131. https://doi.org/10.2307/2444338
  11. Escudero, A., J.M. Irionda and M.E. Torres. 2003. Spatial analysis of genetic diversity as a tool for plant conservation. Biol. Conserv. 113(3):351-365. https://doi.org/10.1016/S0006-3207(03)00122-8
  12. Esselman, E.J., L. Jianqiang, D.J. Crawford, J.L. Windus and A.D. Wolfe. 1999. Clonal diversity in the rare Calamagrostis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA and intersimple sequence repeat markers. Mol. Ecol. 8(3):443-453. https://doi.org/10.1046/j.1365-294X.1999.00585.x
  13. Fager, E.W. 1972. Diversity: a sampling study. Am. Nat. 106 (949):293-310. https://doi.org/10.1086/282772
  14. Felsenstein, J. 2009. PHYLIP (Phylogeny Inference Package). University of Washington, Seattle. Version 3.69. (2012. 3. 7).
  15. Gebauer, R., D. Volarik, T. Funda, I. Fundova, A. Kohutka, V. Klapetek, M. Martinkova, O.A. Anenkhonov and A. Razuvaev. 2010. Pinus pumila growth at different altitudes in the Svyatoi Nos Peninsula (Russia). J. For. Sci. 56(3):101-111.
  16. Godt, M.J.W. and J.L. Hamrick. 1998. Allozyme diversity in the endangered pitcher plant Sarracenia rubra ssp. alabamensis (Sarraceniaceae) and its close relative S. rubra ssp. rubra. Am. J. Bot. 85(6):802-810. https://doi.org/10.2307/2446415
  17. Goncharenko, G.G., V.E. Padutov and A.E. Silin. 1993. Allozyme variation in natural populations of Eurasian pines. I. Population structure, genetic variation, and differentiation in Pinus pumila (Pall.) Regel from Chukotsk and Sakhalin. Silvae Genet. 42(4-5):237-246.
  18. Hamrick, J.L. M.J.W. Godt and S.L. Sherman-Broyles. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forest. 6(1):95-124. https://doi.org/10.1007/BF00120641
  19. Han, S.D., Y.P. Hong, H.Y. Kwon, B.H. Yang and C.S. Kim. 2005. Genetic variation of two isolated relict populations of Vaccinium uliginosum L. in Korea. Jour. Korean For. Soc. 94(4):209-213 (in Korean).
  20. Hong, Y.P., K.J. Cho, Y.Y. Kim, E.M. Shin and S.K. Pyo. 2000. Diversity of I-SSR variants in the populations of Torreya nucifera. Jour. Korean For. Soc. 89(2):167-172 (in Korean).
  21. Hong, Y.P., H.Y. Kwon, B.H. Yang, S.W. Lee, C.S. Kim and S.D. Han. 2004a. Genetic status of an isolated relict population of Dwarf Stone Pine in Mt. Seorak. Jour. Korean For. Soc. 93(5):393-400 (in Korean).
  22. Hong, Y.P., H.Y. Kwon, K.S. Kim, K.N. Hong and Y.Y. Kim. 2004b. Discordance between geographical distribution and genetic relationship among populations of Japanese red pine in Korea revealed by analysis of I-SSR markers. Silvae Genet. 53(3):89-92.
  23. IUCN. 2011. IUCN Red list of threatened species. Version 2011.1. (2012. 3. 7.).
  24. Jensen, J.L., A.J. Bohonak and S.T. Kelley. 2005. Isolation by distance, web service. BMC Genet. 6: 13. Version 3.21. (2012. 3. 7).
  25. Jeong, J.H., Y.J. Park and Z.S. Kim. 2007. Genetic diversity and spatial structure of Symplocarpus renifolius on Mt. Cheonma, Korea. Korean J. Plant Res. 20(6):530-539.
  26. Kajimoto, T. 2002. Factors affecting seedling recruitment and survivorship of the Japanese subalpine stone pine, Pinus pumila, after seed dispersal by nutcrackers. Ecol. Res. 17(4):481-491. https://doi.org/10.1046/j.1440-1703.2002.00505.x
  27. Kang, B.Y., K.N. Hong, J.M. Chung and Y.P. Hong. 2003. Spatial genetic structure of Korean black raspberry(Rubus coreanus) at Mt. Chiak using I-SSR markers. Jour. Korean For. Soc. 92(6):558-566 (in Korean).
  28. Kim, C.S., S.H. Han, W.Y. Lee, J.C. Lee, Y.K. Park and C.Y. Oh. 2005. Biochemical adaptation of Pinus pumila on low temperature in Mt. Seorak, Korea. Korean J. Plant Res. 8(3):217-224.
  29. Kong, W.S. 2000. Geoecology on the subalpine vegetation and landscape of Mt. Sorak. Journal of the Korean Geographical Society 35(2):177-187 (in Korean).
  30. Kong, W.S. 2006. Biogeography of native Korean Pinaceae. Journal of the Korean Geographical Society 41(1):73-93 (in Korean).
  31. Korea National Arboretum (KNA). 2008. Rare plants data book in Korea. GEOBOOK, Seoul, Korea. p. 332 (in Korean).
  32. Krebs, C.J. 1999. Ecological Methodology (2nd ed.). Addison Welsey Educational Publishers, Inc. CA, USA. pp. 192-195.
  33. Kwon, H.J., J.H. Gwon, K.S. Han, M.Y. Kim and H.K. Song. 2010. Subalpine forest vegetation of Daecheongbong Area, Mt. Seoraksan. Kor. J. Env. Eco. 24(2):194-201 (in Korean).
  34. Lewontin, R.C. 1972. The apportionment of human diversity. Evol. biol. 6:381-398.
  35. Nakonechnaya, O.V., A.B. Kholina, O.G. Koren, V. Janecek, A. Kohutka, R. Gebauer and N. Zhuravlev. 2010. Characterization of gene pools of three Pinus pumila (Pall.) Regel populations at the range margins. Russ. J. Genet. 46(12): 1417-1425. https://doi.org/10.1134/S1022795410120033
  36. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89(3):583-590.
  37. Pielou, E.C. 1969. An introduction to mathematical ecology. Wiley-Interscience, NY, USA. pp. 1-286.
  38. Reusch, T.B.H., W. Hukriede, W.T. Stam and J.L. Olsen. 1999. Differentiating between clonal growth and limited gene flow using spatial autocorrelation of microsatellites. Heredity 83(2):120-126. https://doi.org/10.1046/j.1365-2540.1999.00546.x
  39. Senjo, M., K. Kimura, Y. Watano, K. Ueda and T. Shimizu. 1999. Extensive mitochondrial introgression from Pinus pumila to P. parviflora var. pentaphylla (Pinaceae). J. Plant Res. 112(1):97-106. https://doi.org/10.1007/PL00013867
  40. Sydes, M.A. and R. Peakall. 1998. Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs. Mol. Ecol. 7(1):87-93. https://doi.org/10.1046/j.1365-294x.1998.00314.x
  41. Tani, N., N. Tomaru, M. Araki and K. Ohba. 1996. Genetic diversity and differentiation in populations of Japanese stone pine (Pinus pumila) in Japan. Can. J. Forest Res. 26(8): 1454-1462. https://doi.org/10.1139/x26-162
  42. Tani, N., N. Tomaru, Y. Tsumura, M. Araki and K. Ohba. 1998. Genetic structure within a Japanese stone pine (Pinus pumila Regel) population on Mt. Aino-Dake in central Honshu, Japan. J. Plant Res. 111(1):7-15. https://doi.org/10.1007/BF02507145
  43. Tomback, D.F. 1980. How nutcrackers find their seed stores. Condor 82:10-19. https://doi.org/10.2307/1366779
  44. Torimaru, T. and N. Tomaru. 2005. Fine-scale clonal structure and diversity within patches of a clone-forming dioecious shrub, Ilex leucoclada (Aquifoliaceae). Ann. Bot. 95(2): 295-304. https://doi.org/10.1093/aob/mci025
  45. Vaughan, S.P., J.E. Cottrell, D.J. Moodley, T. Connolly and K. Russell. 2007. Clonal structure and recruitment in British wild cherry (Prunus avium L.). Forest Ecol. Manag. 242 (2-3):419-430. https://doi.org/10.1016/j.foreco.2007.01.059
  46. Wallace, L.E. 2002. Examining the effects of fragmentation on genetic variation in Platanthera leucophaea (Orchidaceae): Inferences from allozyme and random amplified polymorphic DNA markers. Plant Spec. Biol. 17(1):37-49. https://doi.org/10.1046/j.1442-1984.2002.00072.x
  47. Waller, D.M., D.M. O'Malley and S.C. Gawler. 1987. Genetic variation in the extreme endemic Pedicularis furbishiae (Scrophulariaceae). Conserv. Biol. 1(4):335-340. https://doi.org/10.1111/j.1523-1739.1987.tb00053.x
  48. Watano, Y., M. Imazu and T. Shimizu. 1995. Chloroplast DNA typing by PCR-SSCP in the Pinus pumila-P, parviflora var. pentaphylla Complex (Pinaceae). J. Plant Res. 108(4):493-499. https://doi.org/10.1007/BF02344239
  49. Yeh, F.C., R.C. Yang, T.B.J. Boyle, Z.H. Ye and J.X. Mao. 1997. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta. Edmonton, Canada.

Cited by

  1. Genetic Diversity of Lonicera caerulea var. edulis in South Korea vol.28, pp.4, 2015, https://doi.org/10.7732/kjpr.2015.28.4.411
  2. Genetic Diversity and Spatial Genetic Structure of Populus koreana Population in Mt. Odae, Korea vol.103, pp.1, 2014, https://doi.org/10.14578/jkfs.2014.103.1.59
  3. Genetic Diversity and Spatial Genetic Structure of Berchemia racemosa var. magna in Anmyeon Island vol.32, pp.1, 2014, https://doi.org/10.7235/hort.2014.13042
  4. Characteristics of Leaf Morphology and Genetic Variation of the Rare Woody Plant, Berchemia racemosa var. magna vol.26, pp.5, 2013, https://doi.org/10.7732/kjpr.2013.26.5.613
  5. Predicting the suitable habitat of the Pinus pumila under climate change vol.23, pp.5, 2014, https://doi.org/10.14249/eia.2014.23.5.379
  6. Effect of Wet Cold and Gibberellin Treatments on Germination of Dwarf Stone Pine Seeds vol.28, pp.2, 2015, https://doi.org/10.7732/kjpr.2015.28.2.253
  7. Effects of Windbreak Fences Composed of Natural Vegetation on Dwarf Siberian Pine (Pinus pumila) Seedlings vol.23, pp.4, 2012, https://doi.org/10.13087/kosert.2020.23.4.59