DOI QR코드

DOI QR Code

Evaluation of Corrosion and Surface Resistance of Ni-Px/C Multi Layer

Ni-Px/C 다층 도금층의 내식성과 표면 전기저항 평가

  • Park, Je-Sik (School of Advanced Materials and System Eng., Kumoh National Institute of Technology) ;
  • Jung, Eun-Kyung (Research Center, Jiodeco Co. Ltd.) ;
  • Lee, Churl-Kyoung (School of Advanced Materials and System Eng., Kumoh National Institute of Technology)
  • 박제식 (금오공과대학교 신소재시스템공학부) ;
  • 정은경 ((주) 지오데코 부설연구소) ;
  • 이철경 (금오공과대학교 신소재시스템공학부)
  • Received : 2012.08.14
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

Ni-P/C multi-layer was synthesized by electroless plating and paste coating for better corrosion and surface conductance as a metallic bipolar plate. The Ni-P layer could be synthesized with the range of 2.6~22.4 at.% P contents and it's surface morphology and corrosion resistance depend on content of P. Corrosion resistance of the Ni-P layer in sulfuric acid by electrochemical test is similar with pure Ni. Surface resistance of pure Ni after corrosion was increased about 8% compared to pure Ni. On the other hand, that of the Ni-P/C composite with 20% carbon content was increased only 1%.

Keywords

References

  1. M. Winter, R. J. Brodd, Chem. Rev., 104 (2004) 4245. https://doi.org/10.1021/cr020730k
  2. C. Ponce de Leon, A. Fr as-Ferrer, J. Gonzalez-Garc a, D. A. Szanto, F. C. Walsh, J. Power Sources, 160 (2006) 716. https://doi.org/10.1016/j.jpowsour.2006.02.095
  3. C. R. Lee, C. N. Yang, Mechanic and Materials, KIMS. 24 (2009).
  4. H. Tawfik, Y. Hung, D. Mahajan, J. Power Sources, 163 (2007) 755. https://doi.org/10.1016/j.jpowsour.2006.09.088
  5. Kh. M. S. Youssef, C. C. Koch, P. S. Fedkiw, Corros. Sci., 46 (2004) 51. https://doi.org/10.1016/S0010-938X(03)00142-2
  6. M. Ger, Mater. Chem. Phys., 87 (2004) 67. https://doi.org/10.1016/j.matchemphys.2004.04.022
  7. D. A. Jones, Principles and Prevention of Corrosion, Prentice Hall, Chapter 4, New Jersey, (1992) 116.
  8. W. X. Chen, J. P. Tu, Z. D. Xu, W. L. Chen, X. B. Zhang, D. H. Cheng, Mater. Lett., 57 (2003) 1256. https://doi.org/10.1016/S0167-577X(02)00968-0
  9. W. X. Chen, J. P. Tu, H. Y. Gan, Z. D. Xu, Q. G. Wang, J. Y. Leed, Z. L. Liue, X. B. Zhang, Surf. Coat. Technol., 160 (2002) 68. https://doi.org/10.1016/S0257-8972(02)00408-5
  10. A. Brenner, G. E. Riddell, J. Res. Nat. Bur. Stand., 37 (1946) 31. https://doi.org/10.6028/jres.037.019
  11. N. E. Mahallaway, A. Bakkar, M. Shoeib, H. Palkowski, V. Neubert, Surf. Coat. Technol., 202(21) (2008) 5151. https://doi.org/10.1016/j.surfcoat.2008.05.037
  12. J. Z. Li, Y. W. Tian, Z. Q. Huang, X. Zhang, Appl. Surf. Sci., 252(8) (2006) 2839. https://doi.org/10.1016/j.apsusc.2005.04.028
  13. R. Tarozaite, O. Gyliene, G. Stalnionis, Surf. Coat. Technol., 200 (2005) 2208. https://doi.org/10.1016/j.surfcoat.2004.07.099
  14. R. Elansezhian, B. Ramamoorthy, P. Kesavan Nair, Surf. Coat. Technol., 203 (2008) 709. https://doi.org/10.1016/j.surfcoat.2008.08.021
  15. KS D 0279, "Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing", (2005).
  16. ASTM G 5-94, "Standard Reference Test Methods for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements", (2011).
  17. S. M. Sharland, Corros. Sci., 27 (1987) 289. https://doi.org/10.1016/0010-938X(87)90024-2
  18. R. N. Duncan, "Corrosion Resistance of High Phosphorus Electroless Nickel Coating", in The Expanded Electroless Nickel School, The Ninth Electroless Nickel School, Elnic Inc., Nashville, TN, (1988) C-41.