DOI QR코드

DOI QR Code

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface

알루미늄의 발수 표면처리 기술 개발

  • Byun, Eun-Yeon (Plasma Coating Technology Department, Korea Institute of Materials Science) ;
  • Lee, Seung-Hun (Plasma Coating Technology Department, Korea Institute of Materials Science) ;
  • Kim, Jong-Kuk (Plasma Coating Technology Department, Korea Institute of Materials Science) ;
  • Kim, Yang-Do (Material Science and Engineering, Pusan National University) ;
  • Kim, Do-Geun (Plasma Coating Technology Department, Korea Institute of Materials Science)
  • 변은연 (재료연구소 표면기술연구본부 플라즈마코팅연구실) ;
  • 이승훈 (재료연구소 표면기술연구본부 플라즈마코팅연구실) ;
  • 김종국 (재료연구소 표면기술연구본부 플라즈마코팅연구실) ;
  • 김양도 (부산대학교 재료공학부) ;
  • 김도근 (재료연구소 표면기술연구본부 플라즈마코팅연구실)
  • Received : 2012.08.27
  • Accepted : 2012.08.30
  • Published : 2012.08.31

Abstract

A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Keywords

References

  1. D. H. Jung, I. J. Park, S. B. Lee, H. S. Park, J. Kor. Inst. Chem., 5 (2002) 39.
  2. B. Qian, Z. Shen, Langmuir, 21 (2005) 9007. https://doi.org/10.1021/la051308c
  3. R. N. Wenzel, Ind. Eng. Chem., 28 (1936) 988. https://doi.org/10.1021/ie50320a024
  4. A. B. D. Cassie, S. Baxter, Trans. Faraday Soc., 40 (1944) 546. https://doi.org/10.1039/tf9444000546
  5. A. Nakajima, K. Hashimoto, T. Watanabe, Monatshefte fur Chemie, 132 (2001) 31. https://doi.org/10.1007/s007060170142
  6. L. Jiang, Y. Zhao, J. Zhai, Angew. Chem. Int. Ed, 43 (2004) 4338. https://doi.org/10.1002/anie.200460333
  7. Y. Wu, H. Sugimura, Y. Inoue, O. Takai, Chem. Vap. Deposition, 8 (2002) 47. https://doi.org/10.1002/1521-3862(20020304)8:2<47::AID-CVDE47>3.0.CO;2-#
  8. J. Zhang, X. Cao, Adv. Funct. Mater., 17 (2007) 593. https://doi.org/10.1002/adfm.200600472
  9. R. A. Caruso, J. H. Schattkc, A. Greiner, Adv. Mater., 13 (2001) 1577. https://doi.org/10.1002/1521-4095(200110)13:20<1577::AID-ADMA1577>3.0.CO;2-S
  10. H. Wang, D. Dai, X. Wu, Appl. Surf. Sci., 254 (2008) 5599. https://doi.org/10.1016/j.apsusc.2008.03.004
  11. X. Song, J. Zhai, Y. Wang, L. Jiang, J. Phys. Chem. B, 109 (2005) 4048. https://doi.org/10.1021/jp045152l
  12. Y. C. Hong, D. H. Shin, S. C. Cho, H. S. Uhm, Chem. Phys. Lett., 427 (2006) 390. https://doi.org/10.1016/j.cplett.2006.06.033
  13. Y. H. Kim, J. Kor. Inst. Chem., 8(3) (2005) 82.
  14. S. H. Bang, S. J. Lee, S. Y. Jeom, I. S. Shin, H. H. Park, H. T. Jeon, Semicond. Sci. Technol., 24 (2009) 025008. https://doi.org/10.1088/0268-1242/24/2/025008
  15. P. S. Flavio, C. Elson, C. Marcelo, C. L. M. Francisco, Mater. Res., 6(3) (2003) 353. https://doi.org/10.1590/S1516-14392003000300009
  16. N. D. Hegde, H. Hirashima, A. V. Rao, J. Porous. Mater., 14 (2007) 165. https://doi.org/10.1007/s10934-006-9021-2
  17. T. Young, Phil. Trans. R. Soc. London, 95 (1805) 65. https://doi.org/10.1098/rstl.1805.0005