DOI QR코드

DOI QR Code

Reduction Algorithm of Environmental Noise by Multi-band Filter

멀티밴드필터에 의한 환경잡음억압 알고리즘

  • Received : 2012.02.06
  • Accepted : 2012.06.19
  • Published : 2012.08.31

Abstract

This paper first proposes the speech recognition algorithm by detection of the speech and noise sections at each frame, then proposes the reduction algorithm of environmental noise by multi-band filter which removes the background noises at each frame according to detection of the speech and noise sections. The proposed algorithm reduces the background noises using filter bank sub-band domain after extracting the features from the speech data. In this experiment, experimental results of the proposed noise reduction algorithm by the multi-band filter demonstrate using the speech and noise data, at each frame. Based on measuring the spectral distortion, experiments confirm that the proposed algorithm is effective for the speech by corrupted the noise.

본 논문에서는 각 프레임에서의 음성신호 및 비음성신호 구간을 검출하는 음성인식 알고리즘을 제안한다. 그리고 음성신호 및 비음성신호 구간의 검출에 따라서 각 프레임에서 잡음을 제거하는 멀티밴드필터에 의한 환경잡음억압 알고리즘을 제안한다. 이 알고리즘은 음성으로부터 특징 파라미터를 추출하여 필터뱅크의 서브밴드 영역에서 잡음을 제거하는 방법이다. 본 실험에서는 환경잡음억압 알고리즘의 성능을 멀티밴드필터를 사용하여 각 프레임에서 잡음을 제거하는 실험결과를 나타낸다. 잡음에 의하여 오염된 음성에 대하여 스펙트럴 왜곡률을 사용하여 본 알고리즘이 유효하다는 것을 확인한다.

Keywords

References

  1. J. P. Haton, "Automatic recognition of noisy speech," Springer Verlag Heildelberg, Speech Recognition and Coding-New Advances and Trends, Vol. 147, Part I, pp. 3-13, 1995.
  2. C. Y. Lee and Y. G. Lee, "Study of the noise processing to technique speech recognition system", Journal of the korea society of computer & information, Vol. 7, No. 2, pp. 73-78, June, 2002.
  3. K. H. Lee, "Speaker adaptation using linear transformation network in speech recognition", Journal of the korea society of computer & information, Vol. 5, No. 2, pp. 90-97, June, 2000.
  4. S. F. Boll, "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. Acoust., Speech, Signal Processing. Vol. 27, No. 2, pp. 113-120, 1979.
  5. Y. Wu and Y. Li, "Robust speech/non-speech detection in adverse conditions using the fuzzy polarity correlation method," IEEE International Conference on Systems, Man, and Cybernetics, Vol. 4, pp. 2935-2939, 2000
  6. J. Chen, K. K. Paliwal and S. Nakamura, "Sub-band based additive noise removal for robust speech recognition," in Proc. Eurospeech, pp. 571-574, 2001.
  7. L. Lin, W. H. Holmes and E. Ambikairajah, "Subband noise estimation for speech enhancement using a perceptual Wiener filter," IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, pp. I-80 - I-80-3, 2003.
  8. A. Ishida and H. Gobata, "Speech/non-speech discrimination under real life environments," The Journal of the Acoustical Society of Japan, Vol. 47, No. 12, pp. 911-917, 1991 (in Japanese).
  9. P. Chaisakul, N. Tangsangiumvisai and P. Luangpitakchumpon, "Number-of-band Selection for Acoustic Feedback Cancellation in Multi-band Compression Hearing Aids," IEEE Region 10 Conference, pp. 1-4, 2006.
  10. J. H. L. Hansen and S. Nandkumar, "Robust estimation of speech in noisy backgrounds based on aspects of the auditory process", The Journal of the Acoustical Society of America, Vol. 97, No. 6, pp. 3833-3849, 1995. https://doi.org/10.1121/1.413108
  11. T. Etame, R. Le Bouquin Jeannes, C. Quinquis, L. Gros and G. Faucon, "Towards a new reference impairment system in the subjective evaluation of speech codecs", IEEE Transactions on Audio, Speech, and Language Processing, Vol. 19 , No. 5, pp. 1301 - 1315, 2011. https://doi.org/10.1109/TASL.2010.2090145
  12. L. Yi-Lin and W. Gang, "Speech emotion recognition based on HMM and SVM", Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vol. 8, pp. 4898 - 4901, 2005.

Cited by

  1. 서브밴드에 기반한 스펙트럼 차감 알고리즘 vol.8, pp.4, 2012, https://doi.org/10.13067/jkiecs.2013.8.4.555