초록
구장산술이래 동양의 전통 수학은 유리수체를 기본으로 이루어져 있다. 따라서 방정식의 무리수해는 허용되지 않으므로 근사해를 구하는 방법은 방정식론에서 매우 중요한 과제가 되었다. 중국의 사료에 나타나는 근사해에 관한 역사를 먼저 기술하고, 이를 조선산학에 나타나는 근사해에 관한 사료와 비교한다. 조선의 근사해에 대한 이론은 박율(1621 - 1668) 의 산학원본 (算學原本) 과 조태구 (趙泰耉, 1660-1723) 의 주서관견(籌書管見)에 이미 정립되었다. 중국의 이론과 달리 두 산학자 모두 근사해의 오차에 관심을 가지고 더 좋은 근사해를 구하는 방법을 얻어내었음을 밝힌다.
Since JiuZhang SuanShu(九章算術), the basic field of the traditional mathemtics in Eastern Asia is the field of rational numbers and hence irrational solutions of equations should be replaced by rational approximations. Thus approximate solutions of equations became a very important subject in theory of equations. We first investigate the history of approximate solutions in Chinese sources and then compare them with those in Chosun mathematics. The theory of approximate solutions in Chosun has been established in SanHakWonBon(算學原本) written by Park Yul(1621 - 1668) and JuSeoGwanGyun(籌書管見, 1718) by Cho Tae Gu(趙泰耉, 1660-1723). We show that unlike the Chinese counterpart, Park and Cho were concerned with errors of approximate solutions and tried to find better approximate solutions.