$MgB_2$ Thin Films on SiC Buffer Layers with Enhanced Critical Current Density at High Magnetic Fields

  • Putri, W.B.K. (Department of Physics, Chungbuk National University) ;
  • Tran, D.H. (Department of Physics, Chungbuk National University) ;
  • Kang, B. (Department of Physics, Chungbuk National University) ;
  • Lee, N.H. (Department of Physics, Sungkyunkwan University) ;
  • Kang, W.N. (Department of Physics, Sungkyunkwan University)
  • Received : 2012.07.02
  • Accepted : 2012.08.08
  • Published : 2012.08.31

Abstract

We have grown $MgB_2$ superconducting thin films on the SiC buffer layers by means of hybrid physical-chemical vapor deposition (HPCVD) technique. Prior to that, SiC was first deposited on $Al_2O_3$ substrates at various temperatures from room temperature to $600^{\circ}C$ by using the pulsed laser deposition (PLD) method in a vacuum atmosphere of ${\sim}10^{-6}$ Torr pressure. All samples showed a high transition temperature of ~40 K. The grain boundaries of $MgB_2$ samples with SiC layer are greater in amount, compare to that of the pure $MgB_2$ samples. $MgB_2$ with SiC buffer layer samples show interesting change in the critical current density ($J_c$) values. Generally, at both 5 K and 20 K measurements, at lower magnetic field, all $MgB_2$ films deposited on SiC buffer layers have low $J_c$ values, but when they reach higher magnetic fields of nearly 3.5 Tesla, $J_c$ values are enhanced. $MgB_2$ film with SiC grown at $600^{\circ}C$ has the highest $J_c$ enhancement at higher magnetic fields, while all SiC buffer layer samples exhibit higher $J_c$ values than that of the pure $MgB_2$ films. A change in the grain boundary morphologies of $MgB_2$ films due to SiC buffer layer seems to be responsible for $J_c$ enhancements at high magnetic fields.

Keywords

References

  1. Nagamatsu J. et al., Nature 410, 63 (2001).
  2. Iwasa Y. et al., IEEE Trans. Appl. Supercond. 16, 1457 (2006).
  3. Eisterer M., Supercond. Sci. Technol. 20, R47, (2007).
  4. Larbalestier D. C. et al., Nature 410, 186 (2001).
  5. Tarantini C. et al.,Phys. Rev. B 73, 134518, (2006).
  6. Cava R. J., Zandbergen H. W. and Inumaru K., Physica C, 385, 8 (2003).
  7. Dou S. X. et al., J. Appl. Phys. 96, 7549 (2004).
  8. Bhatia M. et al., Appl. Phys. Lett. 87, 042505 (2005).
  9. Wilke R. H. T. et al., Phys. Rev. Lett. 92, 217003(2004).
  10. Xi X. X., Rep. Prog. Phys. 71, 116501(2008).
  11. Pogrebnyakov A. V. et al., Appl. Phys. Lett. 85, 2017(2004).
  12. Pogrebnyakov A. V. et al., IEEE Trans. Appl. Supercond. 15, 3321(2005).
  13. Alford N. et al., IEE Colloquium on Practical Applications of High Temperature Superconductors, 7, 1 (1995).
  14. Chromik S. et al., Supercond. Sci. Technol. 19, 577 (2006).
  15. Yao Q. W. et al., Physica C 402, 38 (2004).
  16. Jung S. et al., Supercond. Sci. Technol. 22, 075010 (2009).