Growth Inhibition Effect of Environment-friendly Farm Materials in Colletotrichum acutatum In Vitro

친환경 유기 농자재의 고추 탄저병(Colletotrichum acutatum) 병원균의 생장 억제 효과

  • Kwak, Young-Ki (Kangwon National University) ;
  • Kim, Il-Seop (Kangwon National University) ;
  • Cho, Myeong-Cheoul (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Seong-Chan (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Su (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • Received : 2012.01.30
  • Accepted : 2012.02.23
  • Published : 2012.06.30

Abstract

Inhibition effects on spore germination and mycelia growth for pepper anthracnose fungi (Collectricum acutatum) were investigated in vitro using eco-friendly agricultural materials as well as ecofriendly pesticides. The inhibition effect on mycelia growth of anthracnose fungi is the highest when the anthracnose mycelia were treated with a pesticide (commercial name: Koreayeok) that contains a mixture of Bacillus subtilis and Panibacillus polymyxa, resulting in 100% inhibition of the mycelia growth. Meanwhile, the range of 20~40% inhibition effects on the growth of anthracnose mycelia was observed with other commercial agricultural materials. The significant inhibition effects on spore formation of anthracnose fungus were shown in vitro with two water dispersible pesticides containing sulfur [BTB (100%) and SulfurStar (95.1%)], Koreayeok (95.0%), Borstar (99.0%) containing Bordeaux mixture, and Jihabudea-KM containing Psedomonas spp. (96.1%), respectively. Taken from these in vitro results of inhibiting of the spore germination and mycelia growth together, Koreayeok is the most effective on control of pepper anthracnose disease in vitro. In addition, two water dispersible pesticides containing sulfur (BTB and SulfurStar) and Borstar (99.0%) containing Bordeaux mixture are also significantly applicable to prevent pepper plants from anthracnose disease in vitro. It remains to be determined whether the selected eco-friendly agricultural materials in effective control of anthracnose in vitro can be used to control pepper anthracnose in field.

친환경 유기농자재를 이용하여 고추 탄저병균의 포자 발아, 균사생장 억제효과를 기내에서 조사하였다. 그 결과 균사생장 억제효과 기내검정. 탄저병의 균사생장 억제 효과는 Bacillus subtilis를 주성분으로 하는 제제가 100%의 억제효과를 보였으며, 그 외의 제제는 20~40%의 범위에서 억제효과를 나타내었다. 포자발아억제효과는 유황 수화제 2종('BTB', '황스타')이 각각 100%, 95.1%, '고려역'(95.0%), '보르스타'(99.0%), '지하부대 KM'(96.1%) 순으로 나타났다. 균사생장 억제와 포자 발아억제, 부착기 형성억제 결과를 고려하여 고추 탄저병 방제에 적용 가능한 친환경 방제제는 Bacillus subtilis, Panibacillus polymyxa 혼용제('고려역')가 가장 효과적인 것으로 판단되었으며, 예방을 전제로 한 방제의 경우 유황 수화제, 보르도액을 주성분으로 하는 제제가 적용 가능할 것으로 생각된다. 본 연구에서 선택된 제제는 고추 포장에서 탄저병 방제효과가 최종적으로 인정되면 차후 고추 탄저병 방제에 이용될 것으로 사료된다.

Keywords

References

  1. AVRDC. 1999. Off-season tomato, pepper and eggplant.: AVRDC 1998. Progress Report. Taiwan.
  2. Berke, T., L.L. Black, and C.A. Liu. 1999. Breeding for anthracnose and Phytophthora resistance in hot pepper (Capsicum annuum). J. Kor. Capsicum Res. Coop. 5:1-15.
  3. Cho, M.C., Y. Chae, Y.S. Cho, K.D. Ko, Y.A. Shin, D.H. Kim, and J.W. Jung. 2005. The result of new pepper varieties evaluation at farmer's field. Korean J. Hort. Sci. Technol. 23:38.
  4. Choi, Y.H., H.T. Kim, J.C. Kim, K.S. Jang, K.Y. Cho, and G.J. Choi. 2006. In vitro antifungal activities of 13 fungicides against pepper anthracnose fungi. The Kor. J. of Pesticide Sci. 10:36-42.
  5. Hadden, J.F. and L.L. Black. 1989. Anthracnose of pepper caused by Colletotrichum spp. proceeding of the international symposium on integrated management practices: Tomato and pepper production in the tropics; Taiwan: Asian Vegetable Research and Development Centre. 189-199.
  6. Haggag, W.M. and S. Timmusk. 2007. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology 104:961-969.
  7. Jee, H.J., S.S. Shin, J.H. Lee, W.I. Kim, S.J. Hong, and Y.K. Kim. 2010. Conidial disperse of the pepper anthracnose fungus Colletotrichum acutatum and its density on infected fruits. Res. Plant Dis. 16:101-105. https://doi.org/10.5423/RPD.2010.16.1.101
  8. Kim, S., K.T. Kim, D.H. Kim, E.Y. Yang, M.C. Cho, A. Jamal, Y. Chae, D.H. Pae, D.G. Oh, and J.K. Hwang. 2010. Identification of quantitative trait loci associated with anthracnose resistance in chili pepper (Capsicum spp.). Kor. J. Hort. Sci. Technol. 28:1014- 1024.
  9. Krebs, B., B. Hoding, S. Kübart, M.A. Workie, H. Junge, G. Schmiedeknecht, R. Grosch, H. Bochow, and M. Hevesi. 1998. Use of Bacillus subtilis as biological control agent. I. Activities and characterisation of Bacillus subtilis strains. J. Plant Dis. Prot. 105:181-197.
  10. Kwon, C.S. and S.G. Lee. 2002. Occurrence and ecological characteristics of red pepper anthracnose. Res. Plant Dis. 8:120-123. https://doi.org/10.5423/RPD.2002.8.2.120
  11. Lee, G.W., M.J. Kim, J.S. Park, J.C. Chae, B.Y. Soh, J.E. Ju, and K.J. Lee. 2011. biological control of Phytophthora blight and anthracnose disease in red-pepper using Bacillus subtilis S54. Res. Plant Dis. 17:86-89. https://doi.org/10.5423/RPD.2011.17.1.086
  12. Leoffler, W., J.S. Tschen, N. Venittanakom, M. Kugler, E. Knorpp, T.F. Hsieh, and T.G. Wu. 1986. Antifungal effects of bacilysin and fengycin from Bacillus subtilis F-29-3: a comparison with activaties of other Bacillus antibiotics. J. Phytopathol. 115:204-213. https://doi.org/10.1111/j.1439-0434.1986.tb00878.x
  13. Paulitz, T.C. and J.E. Loper. 1991. Lack of a role for fluorescent siderophore production in the biological control of Phythium damping-off of cucumber by a strain of Pseudomonas putida. Phytopathology 81: 930-935. https://doi.org/10.1094/Phyto-81-930
  14. Perez-Garcia, A., D. Romero, and A. de Vicente. 2011. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22:187-193. https://doi.org/10.1016/j.copbio.2010.12.003
  15. Raaijmakers, J.M., D.M. Weller, and L.S. Thomashow. 1997. Frequency of antibiotic-producing Pseudomonas spp. In natural environments. Appl. Environ. Microbiol. 63: 881-887.
  16. RDA. 2011. Information of agricultural materials. http://www.rda.go.kr/matEnvofood Detail.do.
  17. Romero, D., A. de Vicente, R.H. Rakotoalay, S.E. Dufour, J.-W. Veening, A. Arrebola, F.M. Cazorla, O.P. Kuipers, M. Paquot, and A. Perez-Garcia. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. MPMI. 20:430-440. https://doi.org/10.1094/MPMI-20-4-0430
  18. Seo, S.T., J.H. Park, K.H. Kim, S.H. Lee, E.S. Oh, and S.C. Shin. 2008. Suppression of bacterial Wilt in tomato plant using Pseudomonas putida P84. Res. Plant Dis. 14:32-36. https://doi.org/10.5423/RPD.2008.14.1.032
  19. Son, S.H., Z. Khan, S.G. Kim, and Y.H. Kim. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. Journal of Applied Microbiology 107(2):524-532. https://doi.org/10.1111/j.1365-2672.2009.04238.x
  20. Vidhyasekaran, P., K. Sethuraman, K. Rajappan, and K. Vasumath. 1997. Powder formulations of Pseudomonas fluorescens to control pigeonpea wilt. Biol. Control 8:166-171. https://doi.org/10.1006/bcon.1997.0511
  21. Watanabe, T., W. Oyanagi, K. Suzuki, and H. Tanaka. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase A1 in chitin degradation. J. Bacteriol. 172:4017-4022.
  22. Winding, A., S.J. Binnerup, and H. Pritchard. 2004. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 47:129-141. https://doi.org/10.1016/S0168-6496(03)00261-7
  23. Wulff, E.G., C.M. Mguni, K. Mansfeld-Giese, J. Fels, M. Lubeck, and J. Hockenhull. 2002. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol. 51:574-584. https://doi.org/10.1046/j.1365-3059.2002.00753.x
  24. Yin, J.F., W.H. Zhang, J.Q. Li, Y.H. Li, H.L. Hou, and X.Y. Zhou. 2007. Screening and antagonistic mechanism of biocontrol agents against Phytophthora blight of pepper. Acta Phytopathologica Sinica. 37:88-94.
  25. Yoshida, S., S. Hiradate, T. Tsukamoto, K. Hatakeda, and A. Shirata. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181
  26. Zeriouh, H., D. Romero, L. Garcia-Gutierrez, F.M. Cazorla, A. de Vicente, and A. Perez-Garcia. 2011.The Iturin-like Lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of Cucurbits. MPMI 24:1540-1552. https://doi.org/10.1094/MPMI-06-11-0162