Effects of Opuntia ficus-indica Complexes on Blood Glucose and Pancreatic Islets Histology in Streptozotocin-induced Diabetic Rats

노팔천연복합물이 Streptozotocin으로 유발된 당뇨 쥐의 혈당 및 췌장조직에 미치는 영향

  • Yoon, Jin-A (Dept. of Food and Nutrition, Baewha Women's University) ;
  • Kim, Je-Jung (Dept. of Food Science, Seoul National University of Science and Technology) ;
  • Song, Byeng-Chun (Division of Food Bioscience, Konkuk University)
  • 윤진아 (배화여자대학교 식품영양과) ;
  • 김제중 (서울과학기술대학교 식품공학과) ;
  • 송병춘 (건국대학교 자연과학대학 식품생명과학부)
  • Received : 2012.02.29
  • Accepted : 2012.06.27
  • Published : 2012.06.30

Abstract

This study was carried out to investigate the effects of Opuntia ficus-indica complex (OF) on blood glucose, glucose tolerance, plasma insulin level and histopathological appearance of pancreatic islets in streptozotoxin (STZ)-induced diabetic rats. Thirty-two male Sprague-Daweley rats were divided into non-diabetic control (NC), diabetic control (DC), diabetic OF of 2% (OF-2) and diabetic OF of 5% (OF-5) and fed experimental diets for 3 weeks. Compared to the DC group fasting blood glucose levels in the OF-2 and OF-5 groups were significantly (p<0.05) reduced while fasting plasma insulin level in the OF-2 and OF-5 groups were significantly (p<0.05) increased. Glucose tolerance in the OF-2 and OF-5 groups were improved. Histopathological observation of pancreatic islets of the OF-2 and OF-5 groups showed hyperplasia which was very similar to NC. Numbers of ${\beta}$-cells in OF-2 ($47.81{\pm}0.92$) and OF-5 ($81.64{\pm}2.80$) were higher than numbers of ${\beta}$-cells in DC ($13.18{\pm}1.01$). These results imply that the intake of OF improves ${\beta}$-cell proliferation and prevents the death of ${\beta}$-cells in STZ-induced diabetic rats.

손바닥선인장의 한 종류인 노팔(Opuntia ficus-indica (L.) Mill)을 주재료로 하여 제조한 복합물(OF)의 항당뇨 효과를 알아보기 위해 8주령 수컷 SD-rat에게 streptozotoxin을 주사하여 당뇨를 유발하고, 사료에 OF를 첨가하여 3주간 급여하였으며, 1주일 간격으로 공복 시 혈당을, 3주 후에는 당내성과 혈장 인슐린 농도를 측정하고 췌장 조직에 면역조직화학 염색을 실시하였다. 실험동물은 정상 대조군(NC), 당뇨 대조군(DC), 2% OF 급여군(OF-2), 5% OF 급여군(OF-5)으로 구분되었으며, NC와 DC는 기초식이를, OF-2와 OF-5는 기초식이에 각각 2%와 5%의 OF를 섞어서 급여하였다. 실험 개시 후 1주마다 12시간 절식시켜 꼬리정맥에서 혈액을 채취하여 공복 혈당을 측정하였다. 실험 3주 후 12시간을 절식시켜 glucose(50 mg/kg BW)를 복강주사한 다음, 30, 60, 90, 120분 경과 후에 혈당을 측정하여 당내성을 측정하였고, 심장에서 혈액을 채취하여 혈중 인슐린 함량을 분석하였다. 또한 췌장 조직에 대해 면역조직화학 염색을 실시하여 조직학적인 변화를 알아보았다. 3주간의 공복 시 혈당은 OF-5와 OF-2 모두 유의적으로 감소하였다(p<0.05). 당내성 측정 결과, OF 급여군은 DC와는 달리 혈당 농도의 변화 추이가 NC와 유사하였으며, 특히 OF-5는 OF-2에 비해서도 혈당 강하 효과가 높았던 것으로 드러났다. 췌장 조직의 면역염색에 의하면, OF의 혈당강하 기작은 췌장 Langerhans' Islet의 ${\beta}$-세포를 생성시키고, ${\beta}$-세포의 사멸을 억제시켜 인슐린의 분비를 정상화시키는 것이었으며, 이러한 결과는 혈장 인슐린 함량의 증가로 재확인할 수 있었다. 결론적으로 OF는 I형 당뇨에서 현저한 혈당 강하 효과 및 Langerhans' Islet의 ${\beta}$-세포수를 회복시켜줌으로써 I형 당뇨의 치료에 효과가 있을 것으로 사료된다.

Keywords

References

  1. Annida B, Prince PSM (2004) Supplementation of fenugreek leaves lower lipid profile in streptozotocin-induced diabetic rats. J Med Food 7: 153-156. https://doi.org/10.1089/1096620041224201
  2. Bailey CJ, Day C (1989) Traditional plant medicines as treatments for diabetes. Diabetes Care 12: 553-564. https://doi.org/10.2337/diacare.12.8.553
  3. Chae HY, Lee BW, Oh SH, Ahn YR, Chung JH, Min YK, Lee MS, Lee MK, Kim KW (2005) Effective glycemic control achived by transporting non-viral cationic liposome-mediated VEGF-transfected islets in streptozotocin-induced diabetic mice. Exp Mol Med 37: 513-523. https://doi.org/10.1038/emm.2005.64
  4. Curry DL, Bennett LL, Grodsky GM (1968) Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology 83: 572-584. https://doi.org/10.1210/endo-83-3-572
  5. DeFronzo RA (1981) The effect of insulin on renal sodium metabolism. Diabetologia 21: 165-171.
  6. Desbuquois B, Aurbach GB (1971) Use of polyethylene glycol to separate free and antibody bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab 33: 732-738. https://doi.org/10.1210/jcem-33-5-732
  7. Erlandson SL, Hegre OD, Parsons JA, McEvoy RC, Elde RT (1976) Pancreatic islets cell hormones distribution of cell types in the islet and evidence for the presence of somatostain and gastrin within the D cells. J Histochem Cytochem 24: 883-897. https://doi.org/10.1177/24.7.60437
  8. Falhot K, Cutfield R, Alejandro R, Heding L, Mintz D (1985) The effect of hyperinulinemia on arterial wall and peripheral muscle metabolism in dogs. Metabolism 34: 1146-1149. https://doi.org/10.1016/0026-0495(85)90161-1
  9. Gold G, Manning M, Heldt A, Nowlain R, Pettit JR, Grodsky GM (1981) Diabetes induced with multiple subdiabetogenic doses of streptozotocin: lack of protection by exogenous superoxide dismutase. Diabetes 30: 634-638. https://doi.org/10.2337/diabetes.30.8.634
  10. Henquin JC, Ravier MA, Nenquin M, Jonas JC, Gilon P (2003) Hierarchy of the beta-cell signals controlling insulin secretion. Eur J Clin Invest Review 33: 742-750. https://doi.org/10.1046/j.1365-2362.2003.01207.x
  11. Koh JB, Kim JY (2002) Effect of Okcheonsan on blood glucose, lipid and protein levels in streptozotocin-induced diabetic female rats. J Korean Soc Food Sci Nutr 31: 284-289. https://doi.org/10.3746/jkfn.2002.31.2.284
  12. Lim SJ, Choi SS (1997) The effect of Tricosanthes kiliouii Max. subfractions on the insulin activity in streptozotocin induced diabetic rats and their acute toxicity. Korean J Nutr 30: 25-31.
  13. Lozoya M (1989) Hypogiucaemic activity of Opuntia streptacantha throughout it's annual cycle. Am J Chin Med 17: 221-224. https://doi.org/10.1142/S0192415X89000310
  14. Moon YI (2004) Studies on cultural practices, composition and functional effect of Opuntia ficus-indica var. saboten. Ph D Dissertation Jeju National University, Jeju. p 53.
  15. Sandhya SL, Shewade Y, Bhonde R (2000) Role of bittergourd fruit juice in STZ-induced diabetic state in vivo and in vitro. J Ethnopharmacol 73: 71-79. https://doi.org/10.1016/S0378-8741(00)00282-8
  16. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182: 311-322. https://doi.org/10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9
  17. Shepherd P, Kahn BB (1999) Glucose transporters and insulin action. N Engl J Med 341: 248-257. https://doi.org/10.1056/NEJM199907223410406
  18. Steiner G, Haynes F, Yoshino G, Vranic M (1984) Hyperinulinemia and in vivo very-low-density lipoprotein triglyceride kinetics. Am J Physiol 246: 187-192.
  19. Straub SG, Sharp GW (2002) Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metb Res Rev 18: 451-463. https://doi.org/10.1002/dmrr.329
  20. Watanabe H, Sumi S, Urushihata T, Kitamura Y, Iwasaki S, Xu G, Yano S, Nio Y, Tamura K (2000) Immunohistochemical studies on vascular endothelial growth factor and platelet endothelial cell adhesion molecule-1/CD-31 in islet trans plantation. Pancreas 21: 165-173. https://doi.org/10.1097/00006676-200008000-00010
  21. Wright JR, Lacy PE (1988) Synergistic effects of adjuvants, endotoxin, and fasting on induction of diabetes with multiple low doses of streptozotocin in rats. Diabetes 37: 112-118. https://doi.org/10.2337/diabetes.37.1.112
  22. Xie JT, Aung HH, Wu JA, Attel AS, Yuan CS (2002) Effects of American ginseng berry extract on blood glucose levels in ob/ob mice. Am J Clin Med 30: 187-194. https://doi.org/10.1142/S0192415X02000442
  23. Yang SM, Shon MY, Sung NJ (2004) Effects of Sujungro on blood glucose and lipid level in streptozotocin-diabetic rats. Food Industry and Nutrition 9: 40-44.
  24. Yoon JA (2007) Effects of Opuntia ficus-indica complexes on blood glucose and lipid metabolism in animal model of type I and type II diabetes. Ph D Dissertation Korea University, Seoul. p 1.
  25. Yoon JA, Son YS (2009) Effects of Opuntia ficus-indica complexes B(OCB) on blood glucose and lipid metabolism in streptozotocin-induced diabetic rats. Korean J Food & Nutr 22: 48-56.
  26. Young IR, Stout RW (1987) Effects of insulin and glucose on the cells of the arterial wall: Interaction of insulin with dibutyryl cyclic AMP and low density lipoprotein in arterial cells. Diabete Metab 13: 301-306.
  27. Zhang R, Zhou J, Jia Z, Zhang Y, Gu G (2004) Hypoglycemic effect of Rehmannia glutinosa oligosaccharide and alloxan induced diabetic rats and its mechanism. J Ethnopharmaco 90: 39-43. https://doi.org/10.1016/j.jep.2003.09.018