DOI QR코드

DOI QR Code

Homologue Patterns of Polychlorinated Naphthalenes (PCNs) formed via Chlorination in Thermal Process

  • Ryu, Jae-Yong (Division for Industrial & Environmental Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Do-Hyong (Land Protection Branch, Georgia Environmental Protection Division) ;
  • Mulholland, James A. (School of Civil and Environmental Engineering, Georgia Institute of Technology) ;
  • Jang, Seong-Ho (Department of Bioenvironmental Energy, Pusan National University) ;
  • Choi, Chang-Yong (Division for Industrial & Environmental Research, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Jong-Bum (Division for Industrial & Environmental Research, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2012.06.12
  • Accepted : 2012.08.10
  • Published : 2012.08.31

Abstract

The chlorination pattern of naphthalene vapor when passed through a 1 cm particle bed of 0.5% (mass) copper (II) chloride ($CuCl_2$) mixed with silicon dioxide ($SiO_2$) was studied. Gas streams consisting of 92% (molar) $N_2$, 8% $O_2$ and 0.1% naphthalene vapor were introduced to an isothermal flow reactor containing the $CuCl_2/SiO_2$ particle bed. Chlorination of naphthalene was studied from 100 to $400^{\circ}C$ at a gas velocity of 2.7 cm/s. Mono through hexachlorinated naphthalene congeners were observed at $250^{\circ}C$ whereas a broader distribution of polychlorinated naphthalenes (PCNs) including hepta and octachlorinated naphthalenes was observed at $300^{\circ}C$. PCN production was peak at $250^{\circ}C$ with 3.07% (molar) yield, and monochloronaphthalene (MCN) congeners were the major products at two different temperatures. In order to assess the effect of a residence time on naphthalene chlorination, an experiment was also conducted at $300^{\circ}C$ with a gas velocity of 0.32 cm/s. The degree of naphthalene chlorination increased as a gas velocity decreased.

Keywords

References

  1. Abad, E., Caixach, J., Rivera, J., 1999, Dioxin like compounds from municipal waste incinerator emissions: assessment of the presence of polychlorinated naphthalenes, Chemosphere, 38, 109-120. https://doi.org/10.1016/S0045-6535(98)00177-5
  2. Akki, U., Mulholland, J. A., 1997, Gas-phase formation of dioxin and other aromatic products from 2,6-dichlorophenol pyrolysis, Organohalogen Compounds, 31, 475-479.
  3. Castaldi, M. J., Marinov, N. M., Melius, C. F., Huang, J., Senken, S. M., Pitz, W. J., Westbrook, C. K., 1996, Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame, Proc. Combust. Inst., 26, 693-702.
  4. Falandysz, J., 1998, Polychlorinated naphthalenes: an environmental update, Environmental Pollution 101(1), 77-90. https://doi.org/10.1016/S0269-7491(98)00023-2
  5. Frenkalch, M and Warnatz, J., 1987, Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame, Combust. Sci. Technol., 51, 265-283. https://doi.org/10.1080/00102208708960325
  6. Frenklach, M., Clary, D. W., Cardiner, W. C. and Stein, S. E., 1984, Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene, Proc. Combust. Inst., 20, 887-901.
  7. Hoffman, R. V., Eiceman, G. A., Long, Y. T., Margaret, C. C., Lu, M. Q., 1990, Mechanism of chlorination of aromatic compounds adsorbed on the surface of fly ash from municipal incinerators, Environ. Sci. Technol., 24, 1635-1641 https://doi.org/10.1021/es00081a002
  8. Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M., 1999, De Novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 33, 1038-1043. https://doi.org/10.1021/es980857k
  9. Imagawa, T., Takeuchi, M., 1995, Relation between isomer compositions of polychlorinated naphthalens and congener compositions of PCDDs/PCDFs from incinerators, Organohalogen Compounds, 23, 487-490.
  10. Jansson, S., Fick, J., Marklund, S., 2008, Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion, Chemosphere, 72, 1138-1144. https://doi.org/10.1016/j.chemosphere.2008.04.002
  11. Jarnberg, U., Asplund, C., Jakobsson, E., 1994, Gas chromatographic retention of polychlorinated naphthalenes on non-polar, polarizable, polar and semectic capillary columns, J. Chromat., 683A, 385-396.
  12. Kim, D. H., Kim, J. K., Jang, S. H., Mulholland, J. A., Ryu, J. Y., 2007, Thermal formation of polycyclic aromatic hydrocarbons from cyclopentadiene (CPD), Environ. Eng. Res., 12(5), 211-217. https://doi.org/10.4491/eer.2007.12.5.211
  13. Kim, D. H., Mulholland, J. A., Ryu, J, Y., 2007, Chlorinated naphthalene formation from the oxidation of dichlorophenols, Chemosphere 67, S135-S143. https://doi.org/10.1016/j.chemosphere.2006.05.095
  14. Kim, D. H., Mulholland, J. A., Ryu, J. Y., 2005, Formation of polychlorinated naphthalenes from chlorophenols, Proc. Combust. Inst., 30, 1249-1257.
  15. Manion, J., Louw, R., 1989, Rates, products, and mechanisms in the gas-phase hydrogenolysis of phenol between 922 and 1175 K, J. Phys. Chem., 93, 3563-3574. https://doi.org/10.1021/j100346a040
  16. Marinov, N. M., Castaldi, M. J., Melius, C. F., Tsang, W., 1997, Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Premixed Propane Flame, Combust. Sci. Technol., 128, 295-342. https://doi.org/10.1080/00102209708935714
  17. McEnally, C.S. and Pfefferle, L. D., 2000, The use of carbon-13-labeled fuel dopants for identifying naphthalene formation pathways in non-premixed flames, Proc. Combust. Inst., 28, 2569-2576. https://doi.org/10.1016/S0082-0784(00)80674-8
  18. Melius, C. F., Colvin, M. E., Marinov, N. M., Pitz, W. J., Senkan, S. M., 1996, Reaction mechanisms in aromatic hydrocarbon formation involving the $C_5H_5$ cyclopentadienyl moiety, Proc. Combust. Inst., 26, 685-692.
  19. Ryu, J. Y., Kim, D. H., Choi, K. C., Suh, J. M., 2006, Polychlorinated naphthalene(PCN) and dibenzofuran (PCDF) congener patterns from phenol precursors in thermal process: [I] a priori hypothesis of PCN and PCDF formation pathways from monochlorophenols, Environ. Eng. Res., 11(4), 218-232.
  20. Ryu, J. Y., Kim, D. H., Choi, K. C., Suh, J. M., 2006, Polychlorinated naphthalene(PCN) and dibenzofuran (PCDF) congener patterns from phenol precursors in thermal process: [II] experimental results from dichlorophenols (DCPs), Environ. Eng. Res., 11(4), 233-241.
  21. Ryu, J. Y., Mulholland, J. A., Chu, B., 2003, Chlorination of dibenzo-p-dioxin and dibenzofuran vapor by $CuCl_2$, Chemosphere, 51, 1031-1039. https://doi.org/10.1016/S0045-6535(02)00844-5
  22. Ryu, J. Y., Mulholland, J. A., Dunn, J. E., Iino, F., Gullett, B. K., 2004, Potential Role of Chlorination Pathways in PCDD/F Formation in a Municipal Waste Incinerator, Environ. Sci. Technol., 38, 5112-5119. https://doi.org/10.1021/es0497227
  23. Ryu, J. Y., Mulholland, J. A., Takeuchi, M., Kim, D. H., 2005, Homologue and Isomer Patterns of Polychlorinated Dibenzo-p-dioxin (PCDD) and Dibenzofuran (PCDF) from Phenol Precursors: Comparison with Municipal Waste Incinerator Data, Environ. Sci. Technol., 39, 4398-4406. https://doi.org/10.1021/es048224v
  24. Sakai, S., Hiraoka, M., Takeda, N. and Shiozaki, K., 1996, Behavior of coplanar PCNs and PCNs in oxidative conditions of municipal waste incineration, Chemosphere, 32, 79-88. https://doi.org/10.1016/0045-6535(95)00291-X
  25. Schneider, M., Stieglitz, L., Will, R., Zwick, G., 1998, Formation of polychlorinated naphthalenes on fly ash, Chemosphere, 37, 2055-2070. https://doi.org/10.1016/S0045-6535(98)00269-0
  26. Stieglitz, L., Vogg, H., Zwick, G., Beckj, J., Bautz, H., 1990, On formation conditions of organohalogen compounds from particulate carbon of fly ash, Chemosphere., 23,1255-1264.
  27. Yang, Y., Mulholland, J. A., Akki, U., 1998, Formation of furans by gas-phase reactions of chlorophenols, Proc. Combust. Inst., 27, 1761-1768.