초록
본 논문에서는 운전자 졸음 인식 시스템의 구현 방법과 그에 따른 결과를 소개한다. 영상 입력 장치로는 시중에 판매되는 웹캠 카메라를 사용하였다. 얼굴 검출 방법으로는 Haar 변환 기법을 이용하였으며, 다양한 조명 환경에 강건하게 적응하도록 조명정규화를 수행하였다. 조명정규화를 거친 얼굴 영상은 특징값 추출에 용이하다. 조명정규화를 통한 눈 후보영역은 인체측정학 정보를 이용하여 후보 영역을 줄인 이후에 PCA와 Circle Mask의 혼합 모델을 적용했다. 위 방법을 통해 차량 내부의 복잡한 조명 환경 속에서 강건히 눈 영역을 추출한다. 검출된 눈 영역은 고해상도의 조명 정규화 영상과 간단한 연산을 통하여 졸음 여부를 판별한다. 졸음 상태가 1단계로 판단 될 경우에는 통합 모니터링 인터페이스에서 운전자에게 경고음을 울리며 2단계일 경우에는 CAN(Controller Area Network)를 통하여 안전벨트를 진동하게 함으로써 운전자에게 경고를 준다. 본 논문에서 제안하는 졸음 인식 시스템은 낮은 계산 복잡도를 만족하는 동시에 높은 인식률을 보여준다. 실험 결과 차량 내에서 97%의 인식률이 나타났다.
In this paper, we introduce the implementation of driver fatigue monitering system and its result. Input video device is selected commercially available web-cam camera. Haar transform is used to face detection and adopted illumination normalization is used for arbitrary illumination conditions. Facial image through illumination normalization is extracted using Haar face features easily. Eye candidate area through illumination normalization can be reduced by anthropometric measurement and eye detection is performed by PCA and Circle Mask mixture model. This methods achieve robust eye detection on arbitrary illumination changing conditions. Drowsiness state is determined by the level on illumination normalize eye images by a simple calculation. Our system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. Our algorithm is implemented with low computation complexity and high recognition rate. We achieve 97% of correct detection rate through in-car environment experiments.