DOI QR코드

DOI QR Code

상호 간섭 Broadcast 채널을 위한 MIMO 간섭 정렬을 이용한 복잡도를 줄인 스케쥴링

Reduced Complexity Scheduling Method with MIMO Interference Alignment for Mutually Interfering Broadcast Channels

  • 박해욱 (고려대학교 전기전자전파공학부 무선통신 연구실) ;
  • 박석환 ;
  • 성학제 (삼성전자 무선 사업부) ;
  • 이인규 (고려대학교 전기전자전파공학부 무선통신 연구실)
  • 투고 : 2011.08.23
  • 심사 : 2012.07.12
  • 발행 : 2012.08.31

초록

본 논문에서는, 다중 안테나 다중 사용자가 존재하는 3-cell 간섭 Broadcast 채널 (IFBC: interference broadcast channel) 에서 얻을 수 있는 공간 다중화 이득 (spatial multiplexing gain)에 대해서 소개한다. 이러한 공간 다중화 이득을 최대화하면서 총 수율을 높이기 위하여, 우리는 간섭 정렬 기법 (IA: interference alignment)에 스케쥴링 기법을 더한 방법을 제안하며, 이는 IFBC 환경에서 TDMA 기법보다 높은 수율 성능을 보인다. 최적의 스케쥴링 방법은 다중 사용자 이득을 이용하여 총 수율을 최대화하는 전수 조사 알고리즘을 이용한다. 또한, 전수 조사의 계산 복잡도가 매우 높기 때문에, 이를 효과적으로 줄이는 coordinated ascent 방법을 이용한 부최적 스케쥴링 방법도 제안 한다.

In this paper, we first study the spatial multiplexing gain for the 3-cell interfering broadcast channels (IFBC) where all base stations and mobile users are equipped with multiple antennas. Then, we present the IA scheme in conjunction with user selection which outperforms the TDMA technique in the IFBC environment. The optimal scheduling method utilizes multiuser diversity to achieve a significant fraction of sum capacity by using an exhaustive search algorithm. To reduce the computational complexity, a suboptimal scheduling method is proposed based on a coordinate ascent approach.

키워드

참고문헌

  1. A. N. Carleial, "A case where interference does not reduce capacity," IEEE Transactions on Information Theory, vol. 21, pp. 569.570, September 1975. https://doi.org/10.1109/TIT.1975.1055432
  2. T. S. Han and K. Kobayashi, "A New Achievable Rate Region for the Interference Channel," IEEE Transactions on Information Theory, vol. 27, pp. 49.60, January 1981. https://doi.org/10.1109/TIT.1981.1056307
  3. I. Sason, "On Achievable Rate Regions for the Gaussian Interference Channel," IEEE Transactions on Information Theory, pp. 1345 -1356, June 2004.
  4. R. H. Etkin, D. N. C. Tse, and H.Wang, "Gaussian Interference Channel Capacity to Within One Bit," IEEE Transaction on Information Theory, vol. 54, pp. 5534-5562, December 2008. https://doi.org/10.1109/TIT.2008.2006447
  5. V. R. Cadambe and S. A. Jafar, "Interference Alignment and Degrees of Freedom of the K-User Interference Channel," IEEE Transactions on Information Theory, vol. 54, pp. 3425-3441, August 2008. https://doi.org/10.1109/TIT.2008.926344
  6. T. Gou and S. A. Jafar, "Degrees of Freedom of the K user M ${\times}$ N MIMO interference channel," IEEE Transactions on Information Theory, vol. 56, pp. 6040-6057, December 2010. https://doi.org/10.1109/TIT.2010.2080830
  7. S.-H. Park, H. Park, Y.-D. Kim, and I. Lee, "Regularized Interference Alignment based on Weighted Sum-MSE Criterion for MIMO Interference Channels," in Proc. IEEE ICC, May 2010.
  8. S.-H. Park and I. Lee, "Degrees of Freedom and Sum-Rate Maximization for Two Mutually Interfering Broadcast Channels," in Proc. IEEE ICC, June 2009.
  9. J. Kim, S.-H. Park, H. Sung, and I. Lee, "Spatial Multiplexing Gain for Two interfering MIMO Broadcast Channels Based on Linear Transceiver," IEEE Transactions on Wireless Communications, Vol 9, pp. 3012-3018, October 2010. https://doi.org/10.1109/TWC.2010.081610.100526
  10. D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1997.
  11. H. Sung, S.-H. Park, K.-J. Lee, and I. Lee, "Linear Precoder Designs for K-user Interference Channels," IEEE Transactions on Wireless Communications, vol. 9, pp. 291- 301, January 2010. https://doi.org/10.1109/TWC.2010.01.090221
  12. G. Dimi'c and N. D. Sidiropoulos, "On Downlink Beamforming With Greedy User Selection: Performance Analysis and a Simple New Algorithm," IEEE Transactions on Signal processing, vol. 53, pp. 3857-3868, October 2005. https://doi.org/10.1109/TSP.2005.855401
  13. M. Kobayashi and G. Caire, "Joint Beamforming and Scheduling for a Multi-Antenna downlink with Imperfect Transmitter Channel Knowledge," IEEE Journal on Selected Areas in Communications, vol. 25, pp. 1468 - 1477, September 2007. https://doi.org/10.1109/JSAC.2007.070919
  14. J. M. Cioffi, 379A Class note: Signal Processing and detection. Stanford Univ.