DOI QR코드

DOI QR Code

Expression of Matrix Metalloproteinase-2, but not Caspase-3, Facilitates Distinction between Benign and Malignant Thyroid Follicular Neoplasms

  • Sanii, Sanaz (Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences) ;
  • Saffar, Hiva (Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences) ;
  • Tabriz, Hedieh M. (Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences) ;
  • Qorbani, Mostafa (Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences) ;
  • Haghpanah, Vahid (Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences) ;
  • Tavangar, Seyed M. (Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences)
  • Published : 2012.05.30

Abstract

Purpose: Definite diagnosis of follicular thyroid carcinoma (FTC) is based on the presence of capsular or vascular invasion. To date, no reliable and practical method has been introduced to discriminate this malignant neoplasm from follicular thyroid adenoma (FTA) in fine needle aspiration biopsy material. Matrix metalloproteinase-2 (MMP-2), by degrading extracellular matrix, and caspase-3, by induction of apoptosis, have been shown to play important roles in carcinogenesis and aggressive behavior in many tumor types. The aim of this study was to examine expression of MMP-2 and caspase-3 in thyroid follicular neoplasms and to determine their usefulness for differential diagnosis. Method: Sixty FTAs and 41 FTCs were analysed immunohistochemically for MMP-2 and caspase-3. Result: MMP-2 was positive in 4 FTCs (9.8%), but in none of FTAs, with statistical significance (p= 0.025). Caspase-3 was positive in 30 (50%) of FTAs and in 27 (65.9%) of FTCs. Conclusion: Our results show MMP-2 expression only in FTCs and suggest that this protein may be a useful marker to confirm diagnosis of FTC versus FTA with 100% specificity and 100% predictive value of a positive test. We failed to show any differential diagnostic value for caspase-3 in thyroid follicular neoplasms.

Keywords

References

  1. Barden CB, Shister KW, Zhu B, et al ( 2003).Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin Cancer Res, 9, 1792-800.
  2. Bartolazzi A, Gasbarri A, Papotti M, et al (2001). Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet, 357, 1644-50. https://doi.org/10.1016/S0140-6736(00)04817-0
  3. Bryson PC, Shores CG, Hart C, et al (2008). Immunohistochemical Distinction of Follicular Thyroid Adenomas and Follicular Carcinomas. Arch Otolaryngol Head Neck Surg, 134, 581-6. https://doi.org/10.1001/archotol.134.6.581
  4. Carling T, Udelsman R, (2005). Follicular Neoplasms of the Thyroid: What to Recommend. THYROID, 15, 583-7. https://doi.org/10.1089/thy.2005.15.583
  5. Cerutti JM, Delcelo R, Amadei MJ, et al (2004). A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin Invest, 113, 1234-42. https://doi.org/10.1172/JCI19617
  6. Chen K-T, Lin J-D, Chao T-C, et al (2001). Identifying differentially expressed genes associated with metastasis of follicular thyroid cancer by cDNA expression array. Thyroid, 11, 41-6. https://doi.org/10.1089/10507250150500658
  7. Cho Mar K, Eimoto T, Tateyama H, et al( 2006). Expression of matrix metalloproteinases in benign and malignant follicular thyroid lesions. Histopathology, 48, 286-94. https://doi.org/10.1111/j.1365-2559.2005.02325.x
  8. Devarajan E, Sahin AA, Chen JS, et al (2002). Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene, 21, 8843-51. https://doi.org/10.1038/sj.onc.1206044
  9. Dubravka C, Svetlana S, Ivan P, et al (2000). Immunohistochemical localization of matrix metalloproteinase-2 (MMP-2) in medullary thyroid carcinoma. Arch Oncol, 8, 95-7.
  10. Fennell DA (2005). Caspase regulation in non-small cell lung cancer and its potential for therapeutic exploitation. Clin Cancer Res, 11, 2097-105. https://doi.org/10.1158/1078-0432.CCR-04-1482
  11. Finley DJ, Zhu B, Barden CB, et al (2004). Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann Surg, 240, 425-37. https://doi.org/10.1097/01.sla.0000137128.64978.bc
  12. France B, De La Salmonie`re P, Lange F, et al(2003). Inter observer and intra observer reproducibility in the histopathology of follicular thyroid carcinoma. Hum Pathol, 34, 1092-9. https://doi.org/10.1016/S0046-8177(03)00403-9
  13. Furuya F, Lu C, Willingham MC, et al (2007). Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer. Carcinogenesis, 28, 2451-8. https://doi.org/10.1093/carcin/bgm174
  14. Goldstein RE, Netterville JL, Burkey B, et al (2002). Implications of follicular neoplasms, atypia, and lesions suspicious for malignancy diagnosed by fine-needle aspiration of thyroid nodules. Ann Surg, 235, 656-62. https://doi.org/10.1097/00000658-200205000-00007
  15. Griffith OL, Melck A, Jones SJ, et al (2006). Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol, 24, 5043-50. https://doi.org/10.1200/JCO.2006.06.7330
  16. Haghpanah V, Shooshtarizadeh P, Heshmat R, et al (2006). Immunohistochemical analysis of survivin expression in thyroid follicular adenoma and carcinoma. Appl Immunohistochem Mol Morphol, 14, 422-5. https://doi.org/10.1097/01.pai.0000213100.88074.b8
  17. Hirokawa M, Carney JA, Goellner JR, et al (2002). Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol, 26, 1508-14. https://doi.org/10.1097/00000478-200211000-00014
  18. Kotani T, Asada Y, Aratake Y, et al (1992). Diagnostic usefulness of dipeptidyl aminopeptidase IV monoclonal antibody in paraffin-embedded thyroid follicular tumors. J Pathol, 168, 41-5 https://doi.org/10.1002/path.1711680108
  19. Liang H, Zhong Y, Luo Z, et al (2011). Diagnostic value of 16 cellular tumor markers for metastatic thyroid cancer: an immunohistochemical study. Anticancer Res, 31, 3433-40
  20. Maruta J, Hashimoto H, Yamashita H, et al (2004). Diagnostic applicability of dipeptidyl aminopeptidase IV activity in cytological samples for differentiating follicular thyroid carcinoma from follicular adenoma. Arch Surg, 139, 83-8. https://doi.org/10.1001/archsurg.139.1.83
  21. Mazzaferri EL (1993). Management of a solitary thyroid nodule. N Engl J Med, 328, 553-9. https://doi.org/10.1056/NEJM199302253280807
  22. Moradi Tabriz H, Adabi Kh, Lashkari A, et al (2009). Immunohistochemical analysis of nm23 protein expression in thyroid papillary carcinoma and follicular neoplasm. Pathol Res Pract, 205, 83-7. https://doi.org/10.1016/j.prp.2008.08.007
  23. Nabeshima K, Inoue T, Shimao Y, et al (2002). Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int, 52, 255-64. https://doi.org/10.1046/j.1440-1827.2002.01343.x
  24. Nakamura H, Ueno H, Yamashita K, et al (1999). Enhanced production and activation of progelatinase A mediated by membrane type I matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res, 59, 467-73.
  25. Nelson AR, Fingleton B, Rothenberg ML, et al (2000). Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol, 18, 1135-49. https://doi.org/10.1200/JCO.2000.18.5.1135
  26. Philchenkov A, Zavelevich M, Kroczak TJ, et al (2004). Caspases and cancer: mechanisms of inactivation and new treatment modalities. Exp Oncol, 26, 82-97.
  27. Prasad ML, Pellegata NS, Huang Y, et al (2005). Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol, 18, 48-57. https://doi.org/10.1038/modpathol.3800235
  28. Rajoria S, Suriano R, George A et al (2011). Estrogen induced metastatic modulators MMP-2 and MMP-9 are targets of 3,3'-diindolylmethane in thyroid cancer. PLoS One, 18, 15879.
  29. Rosai J, Tallini G (2011). Thyroid gland. In: Juan Rosai, editor. Rosai and Ackerman's Surgical Pathology. 10th ed. Elsevier: Mosby, 1, 487-565.
  30. Stolf BS, Santos MMS, Simao DF, et al (2006). Class distinction between follicular adenomas and follicular carcinomas of the thyroid gland on the basis of their signature expression. Cancer, 106, 1891-900. https://doi.org/10.1002/cncr.21826
  31. Tryggvason K, Hoyhtya M. Ryke C (1993). Type IV collagenases in invasive tumors. Breast Cancer Res Treat, 24, 209-18. https://doi.org/10.1007/BF01833261
  32. Vermeulen K, Van Bockstaele DR, Berneman ZN (2005). Apoptosis: mechanisms and relevance in cancer. Ann Hematol, 84, 627-39. https://doi.org/10.1007/s00277-005-1065-x
  33. Weidinger C, Karger S, Krause K, et al (2010). Distinct regulation of intrinsic apoptosis in benign and malignant thyroid tumors. Horm Metab Res, 42, 553-6. https://doi.org/10.1055/s-0030-1253374

Cited by

  1. Small sized gold nanoparticles inhibit the proliferation and invasion of SW579 cells vol.12, pp.6, 2012, https://doi.org/10.3892/mmr.2015.4433
  2. Histological and immunohistochemical study on the adverse effects of sodium chlorate on the pituitary–thyroid axis of albino rats and the possible protective effect of curcumin vol.36, pp.3, 2013, https://doi.org/10.1097/01.EHX.0000432848.44823.9f
  3. The MMP-2 -735 C Allele is a Risk Factor for Susceptibility to Breast Cancer vol.15, pp.15, 2014, https://doi.org/10.7314/APJCP.2014.15.15.6199
  4. Clinical significance of integrin β6 as a tumor recurrence factor in follicular thyroid carcinoma vol.37, pp.10, 2014, https://doi.org/10.1002/hed.23780
  5. MMP2 Gene-735 C/T and MMP9 gene -1562 C/T Polymorphisms in JAK2V617F Positive Myeloproliferative Disorders vol.16, pp.2, 2015, https://doi.org/10.7314/APJCP.2015.16.2.443
  6. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer vol.12, pp.9, 2017, https://doi.org/10.1371/journal.pone.0184892