DOI QR코드

DOI QR Code

Recent Candidate Molecular Markers: Vitamin D Signaling and Apoptosis Specific Regulator of p53 (ASPP) in Breast Cancer

  • Patel, Jayendra B. (Biochemistry Research Division, The Gujarat Cancer & Research Institute) ;
  • Patel, Kinjal D. (Biochemistry Research Division, The Gujarat Cancer & Research Institute) ;
  • Patel, Shruti R. (Biochemistry Research Division, The Gujarat Cancer & Research Institute) ;
  • Shah, Franky D. (Biochemistry Research Division, The Gujarat Cancer & Research Institute) ;
  • Shukla, Shilin N. (The Gujarat Cancer & Research Institute) ;
  • Patel, Prabhudas S. (Biochemistry Research Division, The Gujarat Cancer & Research Institute)
  • Published : 2012.05.30

Abstract

Regardless of advances in treatment modalities with the invention of newer therapies, breast cancer remains a major health problem with respect to its diagnosis, treatment and management. This female malignancy with its tremendous heterogeneous nature is linked to high incidence and mortality rates, especially in developing region of the world. It is the malignancy composed of distinct biological subtypes with diverse clinical, pathological, molecular and genetic features as well as different therapeutic responsiveness and outcomes. This inconsistency can be partially overcome by finding novel molecular markers with biological significance. In recent years, newer technologies help us to indentify distinct biomarkers and increase our understanding of the molecular basis of breast cancer. However, certain issues need to be resolved that limit the application of gene expression profiling to current clinical practice. Despite the complex nature of gene expression patterns of cDNAs in microarrays, there are some innovative regulatory molecules and functional pathways that allow us to predict breast cancer behavior in the clinic and provide new targets for breast cancer treatment. This review describes the landscape of different molecular markers with particular spotlight on vitamin D signaling pathway and apoptotic specific protein of p53 (ASPP) family members in breast cancer.

Keywords

References

  1. Bala DV, Duffy SW, Patel DD, et al (2003). Breast cancer, reported dietary intakes and dietary biomarkers: A case control study in Gujarat, India. Res Adv in Cancer, 3, 219-29.
  2. Bala DV, Patel DD, Duffy SW, et al (2001). Role of dietary intake and biomarkers in risk of breast cancer: A case control study. APJCP, 2, 123-30.
  3. Bergamaschi D, Samuels Y, Jin B, et al (2004). ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol, 24, 1341-50. https://doi.org/10.1128/MCB.24.3.1341-1350.2004
  4. Bergamaschi D, Samuels Y, O'Neil NJ, et al (2003). iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human. Nat Genet, 33, 162-7. https://doi.org/10.1038/ng1070
  5. Bergamaschi D, Samuels Y, Sullivan A, et al (2006). iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet, 38, 1133-41. https://doi.org/10.1038/ng1879
  6. Bertone-Johnson ER (2009). Vitamin D and Breast cancer. Ann Epidemiol, 19, 462-7. https://doi.org/10.1016/j.annepidem.2009.01.003
  7. Brodie AMH, Lu Q, Long BJ, et al (2001). Aromatase and COX- 2 expression in human breast cancers. J Steroid Biochem Mol Biol, 79, 41-7. https://doi.org/10.1016/S0960-0760(01)00131-5
  8. Brueggemeier RW, Quinn AL, Parrett ML, et al (1999). Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett, 140, 27-35. https://doi.org/10.1016/S0304-3835(99)00050-6
  9. Chen J, Xie F, Zhang L, Jiang WG (2010). iASPP is overexpressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells through a p53 associated pathway. BMC Cancer, 10, 694. https://doi.org/10.1186/1471-2407-10-694
  10. Cobleigh MA, Tabesh B, Bitterman P, et al (2005). Tumor gene expression and prognosis in breast cancer patients with 10 or more positive lymph nodes. Clin Cancer Res, 11, 8623-31. https://doi.org/10.1158/1078-0432.CCR-05-0735
  11. Colston KW, Hansen CM (2002). Mechanism of implicated in the growth regulatory effects of vitamin D in breast cancer. Endocr Relat Cancer, 9, 45-59. https://doi.org/10.1677/erc.0.0090045
  12. Deeb KK, Trump DL, Johnson CS (2007). Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer, 7, 684-700. https://doi.org/10.1038/nrc2196
  13. Ferlay J, Shin HR, Bray F, et al (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127, 2893-917. https://doi.org/10.1002/ijc.25516
  14. Gorina S, Pavletich NP (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science, 274, 1001-5. https://doi.org/10.1126/science.274.5289.1001
  15. Hedenfalk I, Duggan D, Chen Y, et al (2001). Gene-expression profiles in hereditary breast cancer. N Engl J Med, 344, 539-48. https://doi.org/10.1056/NEJM200102223440801
  16. Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
  17. Jiang F, Bao J, Li P, Nicosia SV, Bai W (2004). Induction of ovarian cancer cell apoptosis by 1, 25 dihydroxyvitamin D3 through the down regulation of telomerase. J Biol Chem, 279, 53213-21. https://doi.org/10.1074/jbc.M410395200
  18. Ju H, Lee KA, Yang M, et al (2005). TP53BP2 locus is associated with gastric cancer susceptibility. Int J Cancer, 117, 957-60. https://doi.org/10.1002/ijc.21281
  19. Koli KJ, Keski-Oja (2000). 1 alpha 25 dihdroxyvitamin D3 and its analogues downregulate cell invasion - associated proteases in cultured malignant cells. Cell growth differ, 11, 221-9.
  20. Krishnan AV, Feldman D (2011). Mechanism of the anticancer and anti inflammatory action of vitamin D. Annu Rev Pharmacol Toxicol, 51, 311-36. https://doi.org/10.1146/annurev-pharmtox-010510-100611
  21. Krishnan AV, Swami S, Feldman D (2010). Vitamin D and breast cancer: Inhibition of estrogen synthesis and signaling. J Steroid Biochem Mol Biol, 121, 343-8. https://doi.org/10.1016/j.jsbmb.2010.02.009
  22. Lettre G, Kritikou EA, Jaeggi M et al (2004). Genome-wide RNAi identifies p53-dependent and -independent regulators of germ cell apoptosis in C. elegans. Cell Death Differ, 11, 1198-203. https://doi.org/10.1038/sj.cdd.4401488
  23. Li G, Wang R, Gao J, et al (2011). RNA interference-mediated silencing of iASPP induces cell proliferation inhibition and G0/G1 cell cycle arrest in U251 human glioblastoma cells. Mol Cell Biochem, 350, 193-200. https://doi.org/10.1007/s11010-010-0698-9
  24. Liu H, Wang M, Diao S, et al (2009). siRNA-mediated downregulation of iASPP promotes apoptosis induced by etoposide and daunorubicin in leukemia cells expressing wild-type p53. Leuk Res, 33, 1243-8. https://doi.org/10.1016/j.leukres.2009.02.016
  25. Liu T, Li L, Yang W, et al (2011). iASPP is important for bladder cancer cell proliferation. Oncol Res, 19, 125-30. https://doi.org/10.3727/096504011X12935427587768
  26. Liu ZJ, Cai Y, Hou L, et al (2008). Effect of RNA interference of iASPP on the apoptosis in MCF-7 breast cancer cells. Cancer Invest, 26, 878-82. https://doi.org/10.1080/07357900801965042
  27. Liu ZJ, Lu X, Zhang Y, et al (2005). Downregulated mRNA expression of ASPP and the hypermethylation of the 5'-untranslated region in cancer cell lines retaining wild-type p53. FEBS Lett, 579, 1587-90. https://doi.org/10.1016/j.febslet.2005.01.069
  28. Maguire O, Campbell (2010). Vitamin D and p 53 - differentiating their relationship in AML. Cancer Biol Ther, 10, 351-3. https://doi.org/10.4161/cbt.10.4.12617
  29. Mantovani A, Allavena P, Sica A, Balkwill F (2008). Cancer related inflammation. Nature, 454, 436-44. https://doi.org/10.1038/nature07205
  30. McCullough ML, Bostick RM, Mayo1 TL (2009). Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annu Rev Nutr, 29, 111-32. https://doi.org/10.1146/annurev-nutr-080508-141248
  31. Mori S, Ito G, Usami N, et al (2004). p53 apoptotic pathway molecules are frequently and simultaneously altered in nonsmall cell lung carcinoma. Cancer, 100, 1673-82. https://doi.org/10.1002/cncr.20164
  32. Narvaez CJ, Zinser G, Welsh J (2001). Functions of 1$\alpha$25- dihydroxyvitamin D3 in mammary gland: from normal development to breast cancer. Steroids, 66, 301-8. https://doi.org/10.1016/S0039-128X(00)00202-6
  33. Nexo BA, Vogel U, Olsen A, et al (2008). Linkage disequilibrium mapping of a breast cancer susceptibility locus near RAI/PPP1R13L/iASPP. BMC Med Genet, 9, 56.
  34. Park SW, An CH, Kim SS, Yoo NJ, Lee SH (2010). Mutational analysis of ASPP1 and ASPP2 genes, a p53-related gene, in gastric and cololorectal cancers with microsatellite instability. Gut Liver, 4, 292-3. https://doi.org/10.5009/gnl.2010.4.2.292
  35. Parker JS, Mullins M, Cheang MC, et al (2009). Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol, 27, 1160-7. https://doi.org/10.1200/JCO.2008.18.1370
  36. Parkin DM, Whelan SL, Feraly J, Storm H. Cancer incidence in five continents, vol. 1-8. IARC CancerBase No.7 (Internet). Lyon: IARC, 2005. Available at http://www.dep.iarc.fr/.
  37. Patel PS, Baxi BR, Adhvaryu SG, Balar DB (1990a). Evaluation of serum sialic acid, heat stable alkaline phosphatase and fucose as markers of breast carcinoma. Anticancer Res, 10, 1071-4.
  38. Patel PS, Baxi BR, Adhvaryu SG, Balar DB (1990b). Individual and combined usefulness of lipid associated sialic acid, mucoid proteins and hexoses as tumor markers in breast carcinoma. Cancer Lett, 51, 203-8. https://doi.org/10.1016/0304-3835(90)90103-5
  39. Patel PS, Patel MM, Raval GN, et al (1998). Seromucoid fraction: a useful biomarker for patients with breast cancer. Am J Clin Oncol, 21, 258-62. https://doi.org/10.1097/00000421-199806000-00011
  40. Patel PS, Raval GN, Patel MM, Balar DB, Patel DD (1996). Electrophoretic pattern of serum glycoproteins on polyacrylamide disc gel in patients with breast cancer. Anticancer Res, 16, 2089-94.
  41. Raval GN, Parekh LJ, Patel DD, et al (2004). Clinical usefulness of alterations in sialic acid, sialyltransferase and sialoproteins in breast cancer. Ind J Clin Biochem, 19, 60-71. https://doi.org/10.1007/BF02894259
  42. Raval GN, Parekh LJ, Patel MM, et al (1997). Role of sialic acid and alkaline DNase in breast cancer. Int J Biol Markers, 12, 61-7.
  43. Robinson RA, Lu X, Jones EY, Siebold C (2008). Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Structure, 16, 259-68. https://doi.org/10.1016/j.str.2007.11.012
  44. Rukin NJ, Strange RC (2007). What are the frequency, distribution, and functional effects of vitamin D receptor polymorphisms as related to cancer risk? Nutr Rev, 65, 96-101. https://doi.org/10.1301/nr.2007.aug.S96-S101
  45. Samuel S, Sitrin MD (2008). Vitamin D's role in cell proliferation and differentiation. Nutr Rev, 66, 116-24. https://doi.org/10.1111/j.1753-4887.2008.00094.x
  46. Samuels-Lev Y, O'Connor DJ, Bergamaschi D, et al (2001). ASPP proteins specifically stimulate the apoptotic function of p53. Mol Cell, 8, 781-94. https://doi.org/10.1016/S1097-2765(01)00367-7
  47. Sgroi DC, Teng S, Robinson G, et al (1999). In vivo gene expression profile analysis of human breast cancer progression. Cancer Res, 59, 5656-61.
  48. Shah FD, Patel JB, Shukla SN, Shah PM, Patel PS (2009a). Evaluation of plasma non-enzymatic antioxidants in breast cancer etiology. APJCP, 10, 91-6.
  49. Shah FD, Shukla SN, Shah PM, Patel HR, Patel PS (2008). Significance of alterations in plasma lipid profile levels in breast cancer. Integr Cancer Ther, 7, 33-41. https://doi.org/10.1177/1534735407313883
  50. Shah FD, Shukla SN, Shah PM, Shukla HK, Patel PS (2009b). Clinical significance of matrix metalloproteinase 2 and 9 in breast cancer. Indian J Cancer, 46, 194-202. https://doi.org/10.4103/0019-509X.52953
  51. Simpson PT, Vargas AC, Al-Ejeh F, et al (2011). Application of molecular findings to the diagnosis and management of breast disease: recent advances and challenges. Hum Pathol, 42, 153-65. https://doi.org/10.1016/j.humpath.2010.07.008
  52. Slattery ML (2007). Vitamin D Receptor Gene (VDR) Associations with Cancer. Nutr Rev, 65, 102-4. https://doi.org/10.1301/nr.2007.aug.S102-S104
  53. Slee EA, Gillotin S, Bergamaschi D et al (2004). The N-terminus of a novel isoform of human iASPP is required for its cytoplasmic localization. Oncogene, 23, 9007-16. https://doi.org/10.1038/sj.onc.1208088
  54. Stadler ZK, Come SE (2009). Review of gene-expression profiling and its clinical use in breast cancer. Crit Rev Oncol Hematol, 69, 1-11. https://doi.org/10.1016/j.critrevonc.2008.05.004
  55. Su D, Ma S, Liu P, et al (2007). Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer, 56, 281-8. https://doi.org/10.1016/j.lungcan.2006.12.002
  56. Thill M, Fischer D, Hoellen F, et al (2010a). Prostaglandin metabolising enzymes and PGE2 are inversely correlated with vitamin D receptor and 25(OH)2D3 in breast cancer. Anticancer Res, 30, 1673-9.
  57. Thill M, Fisher D, Kelling K, et al (2010b). Expression of vitamin D receptor (VDR), cyclooxygenase-2 (COX-2) and 15-hydroxyprostanglandin dehydrogenase (15- PGDH) in benign and malignant ovarian tissue and 25-hydroxycholecalciferol (25(OH2)D3) and prostaglandin E2 (PGE2) serum level in ovarian cancer patients. J Steroid Biochem Mol Biol, 121, 387-90. https://doi.org/10.1016/j.jsbmb.2010.03.049
  58. Thorne J, Campbell MJ (2011). The molecular cancer biology of the VDR. Vitamin D and Cancer, 2, 25-52.
  59. Tokar EJ, Webber MM (2005). Cholecalciferol (Vitamin D3) inhibits growth and invasion by up regulating nuclear receptors and 25- hydroxylase(CYP27A1) in human prostate cancer cells. Clin Exp Metastasis, 22, 275-84. https://doi.org/10.1007/s10585-005-8393-z
  60. Trigiante G, Lu X (2006). ASPP [corrected] and cancer. Nat Rev Cancer, 6, 217-26. https://doi.org/10.1038/nrc1818
  61. Ventura AC, Merajver SD (2008). Genetic determinants of aggressive breast cancer. Annu Rev Med, 59, 199-212. https://doi.org/10.1146/annurev.med.59.060106.184830
  62. Verlinden L, Verstuyf A, Convents R, et al (1998). Action of 1, 25(OH)2D3 on the cell cycle genes, cyclin D1, p21 and p27 in MCF-7 cells. Mol Cell Endocrinol, 142, 57-65. https://doi.org/10.1016/S0303-7207(98)00117-8
  63. Vives V, Su J, Zhong S, et al (2006). ASPP2 is a haploinsufficient tumor suppressor that cooperates with p53 to suppress tumor growth. Genes Dev, 20, 1262-7. https://doi.org/10.1101/gad.374006
  64. Wagner N, Wegner KD, Schley G, et al (2003). 1, 25 dihydroxyvitamin D3 induced apoptosis of retinoblastoma cells is associated with reciprocal changes of Bcl2 and bax. Exp Eye Res, 77, 1-9. https://doi.org/10.1016/S0014-4835(03)00108-8
  65. Welsh J, Wietzke JA, Zinser GM, et al (2003). Impact of the vitamin D3 receptor on growth regulatory pathways in mammary gland and breast cancer. J Steroid Biochem Mol Biol, 83, 85-92.
  66. Yang JP, Hori M, Sanda T, Okamoto T (1999). Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. J Biol Chem, 274, 15662-70. https://doi.org/10.1074/jbc.274.22.15662
  67. Ylikomi T, Laaksi I, Lou YR, et al (2002). Antiproliferative action of vitamin D. Vitam Horm, 64, 357-406. https://doi.org/10.1016/S0083-6729(02)64010-5
  68. Zhang B, Xiao HJ, Chen J, Tao X, Cai LH (2011). Inhibitory member of the apoptosis-stimulating protein of p53 (ASPP) family promotes growth and tumorigenesis in human p53- deficient prostate cancer cells. Prostate Cancer Prostatic Dis, 14, 219-24. https://doi.org/10.1038/pcan.2011.25
  69. Zhao J, Wu G, Bu F, et al (2010). Epigenetic silence of ankyrinrepeat- containing, SH3-domain-containing, and prolinerich- region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology, 51, 142-53. https://doi.org/10.1002/hep.23247

Cited by

  1. Is Season a Prognostic Factor in Breast Cancer? vol.14, pp.2, 2013, https://doi.org/10.7314/APJCP.2013.14.2.743
  2. Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3359
  3. Analysis of Different Activation Statuses of Human Mammary Epithelial Cells from Young and Old Groups vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3763