DOI QR코드

DOI QR Code

요추유합술에서 응력방패 현상 감소를 위한 케이지의 유한요소해석 : CFRP 케이지와 티타늄 케이지 비교 연구

Finite Element Analysis of Instrumented Posterior Lumbar Interbody Fusion Cages for Reducing Stress Shielding Effects: Comparison of the CFRP cage and Titanium cage

  • Kang, Kyung-Tak (School of Mechanical Engineering, Yonsei University) ;
  • Chun, Heoung-Jae (School of Mechanical Engineering, Yonsei University) ;
  • Kim, Ho-Joong (Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine and Seoul National University Bundang Hospital) ;
  • Yeom, Jin-S. (Spine Center and Department of Orthopaedic Surgery, Seoul National University College of Medicine and Seoul National University Bundang Hospital) ;
  • Park, Kyoung-Mi (School of Mechanical Engineering, Yonsei University) ;
  • Hwang, In-Han (School of Mechanical Engineering, Yonsei University) ;
  • Lee, Kwang-Ill (Brain Korea 21 Project for Medical Science, Yonsei University)
  • 발행 : 2012.08.31

초록

본 논문에서는 척추체 간 유합용 케이지의 응력방패현상을 감소시키기 위하여 강성 차이에 대한 연구를 수행하였다. 최근 의료 임플란트 분야에서는 탄소섬유강화 폴리머를 이용하여 좋은 결과를 보여 왔다. 그러나 생체 역학적으로 이 재료에 대하여 요추체의 안정성과 골 이식재가 받는 응력에 관련한 연구는 없었다. 따라서 이전에 유효화한 요추체 (L2-L5) 비선형 유한 요소 모델을 이용하여 L4-L5 분절의 케이지의 강성 차이에 따른 효과를 알아보기 위하여 탄소섬유강화 폴리머와 티타늄 케이지를 이용한 후방 요추체 유합 모델을 만들었다. 자가골 보다 강성이 작은 탄소 섬유강화폴리머 케이지는 인접 분절의 하종판에 응력이 적게 걸리며, 골 이식재에 응력은 증가시켰다. 위의 결과로 탄소섬유강화 폴리머 케이지는 응력 방패 현상을 감소시킬 수 있을 뿐만 아니라 골 유합률을 증가시킬 수 있다.

In recent years, degenerative spinal instability has been effectively treated with a cage. However, little attention is focused on the stiffness of the cage. Recent advances in the medical implant industry have resulted in the use of medical carbon fiber reinforced polymer (CFRP) cages. The biomechanical advantages of using different cage material in terms of stability and stresses in bone graft are not fully understood. A previously validated three-dimensional, nonlinear finite element model of an intact L2-L5 segment was modified to simulate posterior interbody fusion cages made of CFRP and titanium at the L4-L5 disc with pedicle screw, to investigate the effect of cage stiffness on the biomechanics of the fused segment in the lumbar region. From the results, it could be found that the use of a CFRP cage would not only reduce stress shielding, but it might also have led to increased bony fusion.

키워드

참고문헌

  1. Kang, K.T., Chun, H.J., Park, J.C., Na, W.J., Hong, H.T., and Hwang, I.H., "Design of a composite roll bar for the improvement of bus rollover," Composites Part B: Engineering, Vol. 43, No. 4, 2012, pp. 1705-1713. https://doi.org/10.1016/j.compositesb.2012.01.072
  2. Kim, S.H., and Chang, S.H., "Finite Element Analysis on bio-mechanical Behavior of Composite Bone Plate for Healing Femur Fracture considering Contact Conditions," Journal of the Korean Society for Composite Materials, Vol. 23, No. 1, 2010, pp. 1-7. https://doi.org/10.7234/kscm.2010.23.1.001
  3. Palm, W.J., Rosenberg, W.S., and Keaveny, T.M., "Load transfer mechanisms in cylindrical interbody cage constructs," Spine, Vol. 29, No. 19, 2002, pp. 2101-2107.
  4. Martijn, M., Smit, T.H., Sungihara, S., Burger, E., and Wuisman, P., "The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(L-lactic acid) and titanium cages," Spine, Vol. 27, No. 7, 2002, pp. 682-688. https://doi.org/10.1097/00007632-200204010-00003
  5. Shirazi-Adl, S.A., Shrivastava, S.C., and Ahmed, A.M., "Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study," Spine, Vol. 9, No. 2, 1984, pp. 120-134. https://doi.org/10.1097/00007632-198403000-00003
  6. Pintar, F.A., Yoganandan, N., Myers, T., Elhagediab, A., and Sances, A., "Biomechanical properties of human lumbar spine ligaments," Journal of biomechanics, Vol. 25, No. 11, 1992, pp. 1351-1356. https://doi.org/10.1016/0021-9290(92)90290-H
  7. Goel, V.K., Kim, Y.E., Lim, T.H., and Weinstein, J.N., "An analytical investigation of the mechanics of spinal instrumentation," Spine, Vol. 13, No. 9, 1988, pp. 1003-1011. https://doi.org/10.1097/00007632-198809000-00007
  8. Wu, H.C., and Yao, R.F., "Mechanical behavior of the human annulus fibrosus," Journal of Biomechanics, Vol. 9, No. 1, 1976, pp. 1-7. https://doi.org/10.1016/0021-9290(76)90132-9
  9. Shirazi-Adl, A., Ahmed, A.M., and Shrivastava, S.C., "Mechanical response of a lumbar motion segment in axial torque alone and combined with compression," Spine (Phila Pa 1976), Vol. 11, No. 9, 1986, pp. 914-927. https://doi.org/10.1097/00007632-198611000-00012
  10. Polikeit, A., Ferguson, S.J., Nolte, L.P., and Orr, T.E., "Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis," Eur Spine J, Vol. 11, No. 6, 2003, pp. 413-420.
  11. Yamamoto, I., Panjabi, M.M., Crisco, T., and Oxland, T., "Three-dimensional movements of the whole lumbar spine and lumbosacral joint," Spine, Vol. 14, No. 11, 1989, pp. 1256-1260. https://doi.org/10.1097/00007632-198911000-00020
  12. Patwardhan, A.G., Havey, R.M., Meade, K.P., Lee, B., and Dunlap, B., "A follower load increases the load-carrying capacity of the lumbar spine in compression," Spine (Philadelphia, Pa 1976), Vol. 24, No. 10, 1999, pp. 1003-1009. https://doi.org/10.1097/00007632-199905150-00014
  13. Bresnahan, L., Ogden, A.T., Natarajan, R.N., and Fessler, R.G., "A biomechanical evaluation of graded posterior element removal for treatment of lumbar stenosis: comparison of a minimally invasive approach with two standard laminectomy techniques," Spine (Philadelphia, Pa 1976), Vol. 34, No. 1, 2009, pp. 17-23. https://doi.org/10.1097/BRS.0b013e318191438b
  14. Renner, S.M., Natarajan, R.N., Patwardhan, A.G., Havey, R.M., Voronov, L.I., Guo, B.Y., Andersson, G.B.J., and An, H.S., "Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine," Journal of Biomechanics, Vol. 40, No. 6, 2007, pp. 1326-1332. https://doi.org/10.1016/j.jbiomech.2006.05.019
  15. Kim, H.J., Chun, H.J., Kang, K.T., Lee, H.M., Kim, H.S., Moon, E.S., Park, J.O., Hwang, B.H., Son, J.H., and Moon, S.H., "A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis," Medical & Biological Engineering & Computing, Vol. 47, No. 6, 2009, pp. 599-605. https://doi.org/10.1007/s11517-009-0463-y
  16. Kim, H.J., Chun, H.J., Moon, S.H., Kang, K.T., Kim, H.S., Park, J.O., Moon, E.S., Sohn, J.S., and Lee, H.M., "Analysis of biomechanical changes after removal of instrumentation in lumbar arthrodesis by finite element analysis," Medical and Biological Engineering and Computing, Vol. 48, No. 7, 2010, pp. 703-709 https://doi.org/10.1007/s11517-010-0621-2
  17. Kim, H.J., Chun, H.J., Moon, S.H., Kang, K.T., Kim, H.S., Park, J.O., Moon, E.S., Kim, B.R., Sohn, J.S., Ko, Y.N., Jang, J.W., and Lee, H.M., "The biomechanical effect of pedicle screws' insertion angle and position on the superior adjacent segment in one segment lumbar fusion," Spine, [Epub ahead of print]