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Abstract 
 

Owing to its simplicity and flexibility, the session initiation protocol (SIP) has been widely 

adopted as a major session-management protocol for Internet telephony or Voice-over IP 

(VoIP) services. However, SIP has faced various types of security threats. Call-disruption 

attacks are some of the most severe threats they face, and can greatly inconvenience 

consumers. In this paper, we analyze such SIP call-disruption attacks, and propose a 

method for detecting and counteracting them by extending the SIP INFO method with 

authentication. Using the proposed method, both the target user and the SIP server can 

detect the existence of a call-disruption attack on a user and counteract the attack. We 

demonstrate the effectiveness of the proposed method from the viewpoint of computational 

complexity by configuring a test-bed with an Asterisk SIP proxy server and an SIP 

performance (SIPp) emulator. 
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1. Introduction 

The session initiation protocol (SIP) is an application-layer signaling protocol used for 

establishing, maintaining, and terminating multimedia sessions [1]. Owing to its simplicity 

and flexibility, SIP has found widespread use as a session-management protocol for a 

variety of multimedia applications including Internet telephony, instant messaging, games, 

and IP multimedia subsystems (IMSs). 

However, because of its similar structure with Hypertext Transfer Protocol (HTTP), 

including text-based message formats, SIP has faced various types of threats, such as 

distributed denial-of-service (DDoS), fuzzing, session hijacking, and call-disruption 

attacks [2]. Among these, call-disruption attacks are some of the most severe threats, 

greatly inconveniencing consumers. Table 1 lists the typical types of SIP call-disruption 

attacks that use various SIP request messages. The detailed procedures of these attacks are 

provided in Section 3. 

Table 1. Description of call-disruption attacks. 

Attack Type Attack Description 

CANCEL Cancel ongoing session setup requests using fake CANCEL messages 

BYE Terminate existing sessions using fake BYE messages 

REGISTER 
Remove or modify user registration information from the registration 

server using fake de-REGISTRATION messages 

re-INVITE 
Disrupt or intercept sessions under SIP-based mobility support 

environments using fake re-INVITE messages 

 

Several research studies have dealt with such call-disruption attacks. Authentication- and 

encryption-based approaches [3][4][5][6] are ineffective, because SIP servers generate a 

certain amount of computational overhead for the encryption and decryption of individual 

messages. It was revealed in [7], [8], and [9] that the overhead generated by message 

authentication has a significant effect on the performance degradation in call setup delay. 

To deal with this, VoIP-specific Intrusion Detection System (IDS) architectures have been 

proposed [10][11]. However, these architectures require additional systems beside the 

server and user, as well as a very complicated structure to detect the various patterns of 

possible attacks. As in traditional IDSs, these IDS-based systems do not provide effective 

countermeasure mechanisms. While retransmission-based countermeasure schemes 

[12][13] use external systems to reduce the overhead, these methods may cause other 

call-disruption attacks. 
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In this paper, we propose an effective method for detecting and counteracting the types of 

call-disruption attacks listed in Table 1. The proposed method extends the SIP INFO 

method to detect a possible call-disruption attack on a target user, and notifies both the user 

and the server of the attack symptoms for a counteraction. The proposed method can be 

effectively applied to both static and mobile environments. The performance of the 

proposed mechanism is evaluated by configuring a test-bed with a Session Initiation 

Protocol performance (SIPp) [14] emulator and an Asterisk proxy server [15]. 

This paper is organized as follows. Section 2 describes some background issues 

related to the proposed scheme. Section 3 presents the call-disruption attack models 

considered in this paper, and Section 4 explains our proposed method for detecting and 

counteracting various call-disruption attacks as example usage scenarios. Next, Section 5 

illustrates the effectiveness of the proposed method through a performance evaluation, and 

Section 6 concludes this paper. 

2. Background 

2.1 SIP Overview 

SIP [1] is an application-layer protocol that enables multimedia sessions or calls to be set 

up, maintained, modified, or terminated. Similar to HTTP, SIP entities exchange text-based 

messages as request and response pairs. Fig. 1 shows an example system architecture for 

SIP-based applications and services [16]. Each user agent (UA) registers with its domain’s 

registrar server (1), and the registrar server then stores the information in its location server 

(2). The location servers store the location information of the UAs and determine where 

calls should be routed. The detailed usage of the location servers is illustrated in Section 

3.2.B. UA(A) initiates a call request to UA(B) by sending an INVITE to its proxy server (3), 

and the proxy server resolves the location of UA(B) by consulting its location server (4). 

Next, A’s proxy server transmits the request to B’s proxy server (5), and the receiving 

proxy server then consults its location server (6) and forwards the request to UA(B) (7). 

After a three-way handshake between UA(A) and UA(B) in which 200 OK and ACK 

messages are exchanged, a media session between the two UAs is established (8). 

An SIP message has a text-based format with the same three-part structure as that 

of an HTTP message: start line, message header, and message body. The start line 

identifies the message type and destination of the message. The message header includes 

signaling information, and the body contains additional information, e.g., information on 

the media used for the communication. The nature of this text-based message format makes 

it possible for attackers to form or alter the major attributes of SIP messages that can easily 

affect the call processing, which causes the call-disruption attacks listed in Table 1. With 

alterations of the attributes by an attacker, it is very difficult to differentiate fake requests 

from normal requests by legitimate UAs. 
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Fig. 1. Example system architecture for SIP-based applications [16] 

2.2 SIP INFO Method 

Various message forms and methods have been defined for SIP session control. The INFO 

method is used to carry optional application-level information on an SIP session [17]. The 

INFO method is not used to update the characteristics of an SIP dialog or session, but rather 

to allow applications to exchange information that might update their status. 

To exchange information on a session, a UA sends an INFO request associated 

with an InfoPackage, or with the legacy INFO usage, for backward compatibility with the 

obsolete RFC 2976 [18]. An InfoPackage contains the content and semantics of the 

information carried in an INFO message. Optional INFO-based information on the session 

is included in the header and/or body of the INFO message. If an INFO request associated 

with an InfoPackage contains a message body, the body is identified by a 

Content-Disposition header field with an Info-Package value. The use of an 

InfoPackage associated with an INFO request for this proposed method is shown in Fig. 7. 

The UA receiving the INFO request replies with a 469 Bad InfoPackage response 

when it is unwilling to receive the INFO request. Otherwise, the UA must be prepared to 

receive the INFO request associated with the InfoPackage. If the INFO request is 

syntactically correct and well structured, the UA sends a 200 OK response. Otherwise, the 
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Failure (6xx) in accordance with the ordinary SIP error-handling procedures. 

3. SIP Call-Disruption Attack Models 

3.1 CANCEL and BYE Call-Disruption Attacks 

The setup for an SIP session is conducted through a three-way handshake using INVITE, 
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disrupt the session setup process as shown in Fig. 2(c). In a CANCEL call-disruption attack 

scenario, UA(A) initiates a session setup by sending an INVITE message to UA(B). By 

eavesdropping on the INVITE, an attacker can generate a fake CANCEL message to 

terminate the setup process. For a CANCEL attack to succeed, the CANCEL message from 

the attacker has to be formulated before a 200 OK response from UA(B) is delivered to 

UA(A). The major attributes that should be included in CANCEL are the uniform resource 

indicators (URIs) of the caller and receiver and the Call-ID, which are identical to those 

included in the INVITE. Upon receiving a fake CANCEL message, the SIP server cancels 

the INVITE request from UA(A). Therefore, the UAs cannot complete a normal call setup. 

 
(a) Normal session setup (b) Normal CANCEL  (c) CANCEL attack 

Fig. 2. Example of a CANCEL call-disruption attack 

The established session can be terminated by sending a BYE message as shown in Fig. 3(a). 

As in CANCEL attacks, an attacker eavesdrops on the three-way handshake session setup 

procedure. The attacker can then terminate an existing session by sending a fake BYE 

message with the proper session information obtained from the eavesdropped INVITE, as 

shown in Fig. 3(b). 
 

   
(a) Normal BYE    (b) BYE attack 

Fig. 3. Example of a BYE call-disruption attack 
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3.2 REGISTER Attack in Pre-call Mobility (or Roaming) Situations 

SIP can support the mobility of a mobile host (MH) at the application layer [19]. Generally, 

SIP-based mobility is divided into two parts: pre-call mobility (or roaming) before a call, 

and mid-call mobility during a call. Fig. 4(a) shows a typical example of a normal pre-call 

mobility scenario. UA(A) initially registers with the registrar server by sending a 

REGISTER message including its contact information, and the server updates the record of 

the UA in the location server. The record is then reflected to the proxy server. After the UA 

moves to a different network, it re-registers and its records are updated at the servers. When 

UA(B) tries to establish a session with UA(A), it sends an INVITE destined for UA(A), and 

the proxy server then forwards the INVITE to the updated UA(A) location. As a result of 

this three-way handshake, a normal session between UA(A) and UA(B) is established. 

Attackers can establish illegal sessions by utilizing a pre-call mobility mechanism. 

An example of an attack scenario is shown in Fig. 4(b). An attacker changes the records on 

UA(A) by sending a fake REGISTER including the attacker’s location information. Since 

the registrar server cannot distinguish whether the message is issued from an attacker, the 

server changes the records on UA(A) with those provided by the attacker. A 200 OK 

message, which is a response for a successful change, is sent only to the attacker, but not to 

UA(A). Next, an INVITE from UA(B) to UA(A) is forwarded to the attacker, but not to 

UA(A). As a result of this process, an abnormal session between the attacker and UA(B) is 

established. A pre-call mobility attack has been classified by some researchers as a type of 

session hijacking attack. From the viewpoint of an attacked user, however, such an attack 

creates a situation in which normal calls cannot be made from or to the user. We therefore 

classify this type of attack as a call-disruption attack.  

 

 
(a) Normal pre-call mobility   (b) Pre-call mobility attack 

Fig. 4. Example of a call-disruption attack on pre-call mobility 
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3.3 re-INVITE Attack during Mid-call Mobility 

Once a session has been established using the three-way handshake INVITE/200 OK/ACK 

sequence, it can be modified by a re-INVITE, which is another INVITE/200 OK/ACK 

sequence. Using a re-INVITE, mid-call mobility can be supported without having to go 

through an intermediate SIP proxy, as shown in Fig. 5(a). When moving from one network 

to another, UA(A) acquires a new IP address, and then sends a re-INVITE message to the 

corresponding UA(B), allowing the SIP session to continue with the new address. However, 

attackers can intercept the session by sending a fake re-INVITE message, as shown in Fig. 

13(b). Based on the SIP specifications, there is no way for UA(B) to distinguish whether 

the re-INVITE is from UA(A) or from an attacker.  

 

 
(a) Normal re-INVITE procedure  (b) Re-INVITE attack 

Fig. 5. Example of a re-INVITE attack during mid-call mobility 
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sent to the server, as depicted in Fig. 6(a). Note that the UA should store the latest 

message sent to the server for Ext-INFO requests. The server then accepts the SIP 

message and provides the appropriate service. 

Case 2 (without a fake response by an attacker): If the body in the Ext-INFO request is not 

identical to the message it sent to the server most recently, the UA replies to the 

Ext-INFO response with a 422 INVALID message, which is shown in Fig. 6(b). When 

the UA finds any differences between the body of the received Ext-INFO request and the 

latest message sent to the server, it can determine that it is the target of a call-disruption 

attack. Similarly, the server also discovers the attack by receiving the 422 INVALID 

message from the UA. 

Case 3 (with a fake response by an attacker): When a server sends an Ext-INFO request, 

an attacker may eavesdrop on the request. The attacker may then send an Ext-INFO 

response with a 200 OK to complete the call disruption, as shown in Fig. 6(c). However, 

the server can check for any conflicts between the two received messages, and if such a 

conflict exists, the server can easily recognize it as evidence of an attack. 
 

 
(a) Case 1  (b) Case 2   (c) Case 3 

Fig. 6. Basic procedure for detecting a call-disruption attack using Ext-INFO 

An example of the Ext-INFO request format is shown in Fig. 7. As mentioned in Section 

2.B, an INFO request may contain an InfoPackage carrying application-level information, 

including the content and semantics of the information to be carried. As shown in Fig. 7, 

the proposed Ext-INFO request is indicated in the Info-Package header field as 

EXT-INFO, with InfoPackage provided in the Content-Disposition header field. 

In Fig. 7, it is assumed that a call setup between two user agents, UA(A) and UA(B), is 

progressing through a proxy server, and that a CANCEL message from UA(A) has been 

received at the server. As mentioned before, the CANCEL message might be sent from 

either the UA(A) itself or an attacker. As shown in Fig. 7, the Ext-INFO request consists of 

a header and body, as in any other SIP message. Unlike an ordinary INFO method, however, 

since the server initiates the request and wants to receive a response to it, its URI appears in 

the From field in the INFO header. In addition, since UA(A) has been recorded as the 

sender of the CANCEL message, the URI of UA(A) is designated to the recipient of the 

Proxy Server

SIP Request

UA

Ext-INFO Request

(body includes SIP 

message)

Ext-INFO Response

(200 OK)

Proxy Server

faked 

SIP Request

UA

Ext-INFO Req.

Attacker

both UA and 

server  detect 

the attack

Ext-INFO Resp.

(422 INVALID)

Proxy ServerUA

Ext-INFO Resp.

(422 INVALID)

Attacker

Overhearing

inconsistent event 

occurs, the server  

detects the attack

faked 

SIP Request

the UA 

detects the 

attack

Ext-INFO Resp.

(200 OK)

Ext-INFO Req.



1862                              Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks 

Ext-INFO request, which appears in the To field in Ext-INFO header. The entire CANCEL 

message received by the server is included in the Ext-INFO body. The Call-ID should be 

identical to the call identifier of the session between the two UAs.  

When UA(A) receives an Ext-INFO request, it checks whether the message included 

in Ext-INFO body is identical to its latest message sent to the server lastly. Based on the 

result of the check, either a 200 OK or a 422 INVALID response is sent to the server. Since 

the UA receiving an INFO request should reply with a 200 OK or other error-handling 

response, no additional overhead is incurred when using the Ext-INFO method as 

compared to a conventional INFO method. 
 

 

Fig. 7. An example of an extended INFO message format 
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an SIP request from a legitimate UA, it sends an Ext-INFO request to the UA. If an attacker 

that knows the mechanism overhears the request, it can send a malformed response with a 

422 INVALID response, which conflicts with the 200 OK response sent by the UA. The 

server may then decide that the received request is fake and ignore it, preventing a proper 

SIP service from being provided to the UA. This may cause another type of call-disruption 

attack. 

 

 
Fig. 8. Drawback of Ext-INFO 
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After the UA or server detects any evidence of a call-disruption attack, all of the SIP 

messages exchanged between them can be encrypted using an optional process. Note that 

the exchanged messages are only encrypted during sessions in which an attack has been 

detected. That is, SIP messages exchanged between sessions with no evidence of an attack 

do not need to be encrypted. This can reduce the computational complexity compared to 

cases in which all messages are encrypted. Any encryption mechanism can be used for this 

optional process, but such a discussion is beyond the scope of this paper. 

 

 
(a) Non-attack case     (b) Attack case 

Fig. 9. Hyb-INFO procedure 
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significantly through the partial use of authentication or encryption processes only for 

severely attacked sessions, unlike traditional authentication- or encryption-based 

approaches, which use authentication or encryption/decryption processes for all messages. 

 

 
(a) Overall procedure    (b) Hyb-INFO procedure 

Fig. 10. Overall procedure of the proposed method 

4.2 Example Usage Scenarios 

4.2.1 Detection and Countermeasure of CANCEL and BYE Call-Disruption Attacks 

Using the proposed method shown in Fig. 10, a CANCEL attack can be prevented, as 

shown in Fig. 11 (a). A model of a CANCEL attack is given in Fig. 2(c) in Section 3.A. 

After the server receives a fake CANCEL message from an attacker, it generates an 

Ext-INFO request and sends it to UA(A). Even if the attacker overhears the message, it 

cannot generate a response to the Ext-INFO request if it does not know the shared key 

between the server and UA(A). UA(A) responds with a 422 INVALID message, since it 

did not send the SIP message. The server then acknowledges that the CANCEL message is 
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(a) Protection from a CANCEL attack  (b) Protection from a BYE attack 

Fig. 11. Protection from CANCEL and BYE call-disruption attacks 

4.2.2 Detection and Countermeasure of REGISTER (or Pre-call Mobility) Attack 

Using the proposed method, the REGISTER attack illustrated in Fig. 4(b) in Section 3.B 

can be detected and blocked, as shown in Fig. 12. When the registrar server receives a 

REGISTER to update the UA’s record, it sends an Ext-INFO request destined for both the 

previous and current UA locations without changing the record. Note that since the UA’s 

record is not changed, the server knows both the previous and newly requested UA records, 

and can send an INFO request to both the previous and current UA locations. Since no call 

information is requested for the pre-call mobility procedure, only the use of the Hyb-INFO 

scheme can be considered. If the REGISTER is fake, that is, the UA’s location has not 

changed, the legitimate UA provides a 422 INVALID response, to which the attacker 

cannot generate a proper response. Based on the UA’s response, the server ignores the 

attacker’s REGISTER and does not change the UA’s record. Normal sessions can then be 

established between this UA and others. Note that even if the attacker sends a 200 OK 

response, the server can detect a conflict and invoke appropriate countermeasures.  

 

 
Fig. 12. Protection from a REGISTER call-disruption attack 
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4.2.3 Detection and Countermeasure of re-INVITE Attack during Mid-call Mobility 

A re-INVITE attack can be detected using the proposed method, as shown in Fig. 13. When 

UA(B) receives a re-INVITE message with a change in location information, it sends a 

Hyb-INFO request to both the previous and currently indicated locations. Note that, since 

the re-INVITE process is conducted between the UAs directly, we can only use the 

Hyb-INFO scheme. If a re-INVITE comes from an attacker, UA(A) sends a Hyb-INFO 

response with a 422 INVALID message. With this response, UA(B) ignores the re-INVITE, 

and the correct session with UA(A) can continue without disruption. 

 

 

Fig. 13. Protection from a re-INVITE call-disruption attack 

5. Performance Evaluation 
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systems for performance comparisons. In the TLS-based scheme, since all SIP messages 

are encrypted, attackers cannot disrupt any sessions without knowing the secret keys 

shared between the server and the UAs. However, the UAs and server should decrypt and 

encrypt all SIP messages exchanged between them. 

We have seen that the proposed method exactly detects the call-disruption attacks 

for all the generated calls, in which we made the attacks according to attack models 

described in Section 3.2. In our experiments, no false-positive events were found, i.e., 100% 

of the attack trials were detected and fixed. 

To show the effectiveness of the proposed scheme from the viewpoint of 

computational complexity, we carried out the following experiments. We varied the 

average SIP call generation rates (5, 10, 20, 30, …, and 60 in calls/s), and set the average 

call duration to 30 s with an exponential distribution. To reflect the practical use of SIP 

server resources, such as CPU and memory, we considered the whole life of a call, from its 

session setup to its termination. That is, after the duration exponentially given for a call is 

expired, the call sends a BYE message to terminate its session. Note that resources are 

utilized during a call and at the session setup and termination. However, since Real-time 

Transport Protocol (RTP) packets for a conversation are exchanged through a separate 

connection between terminals, but not through the SIP server, they cannot affect the usage 

of the SIP server’s resources. Fig. 14 shows performance comparisons for the CPU load 

and memory occupation. In Fig. 14, the original SIP mechanism without authentication is 

marked as NORMAL. As shown in Fig. 14 (a), the CPU load for each scheme increases as 

the average call rate increases. However, the degree of increase for TLS is considerably 

higher than that of the other schemes. When the call rate increases to greater than 30 calls/s, 

the CPU load for TLS reaches 100%, which means that no SIP messages can be served. 

The CPU loads for Hyb-INFO are larger than those for Ext-INFO as Hyb-INFO requires an 

additional authentication process compared to Ext-INFO. The NORMAL mechanism 

shows the lowest amount of CPU load. Fig. 14 (b), shows that the amount of memory 

required for processing SIP messages increases with increasing average call rate. The 

memory occupancy of Ext-INFO is almost the same as that of NORMAL, and is 

considerably lower than that of Hyb-INFO and TLS. TLS shows the largest memory 

occupancy. The results of Fig. 14 indicate that the proposed scheme can protect users from 

call-disruption attacks with much lower system utilization compared to TLS.  
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Fig. 14. Performance in terms of CPU and memory load 

In Fig. 15, the average processing times as cumulative density functions (CDFs) are 

compared for NORMAL, Ext-INFO, Hyb-INFO, and TLS for various call rates of 10, 20, 

30, 40, and 50 calls/s. We define the processing time for an SIP message as the time spent 

between its arrival at and its departure from the SIP server. The processing time includes 

the queuing (or buffering) delay, decryption/encryption delay for authenticated messages, 

attack decision delay, and transmission delay. The queuing delay is the time that a message 

spends in the waiting room until the service is initiated. The message should be decrypted, 

analyzed, and encrypted during the service time if it is authenticated. The service time 

increases with increasing number of authenticated messages. As a result, the queuing 

delays and processing times for individual messages will increase as well. 
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Fig. 15. Average processing times (in milliseconds) 
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calls/s, they are increased up to 250 ms. In addition, Ext-INFO shows longer processing 

times than NORMAL. Note that messages are still served even when the processing times 

are increased up to 250 ms. However, the processing times for Hyb-INFO are extremely 

long when the call rate is 40 calls/s or more, as can be seen from Fig. 15 (c), and messages 

can therefore not be served. An extremely long message processing delay creates a type of 

DoS (Denial of Service) at the server. Even with call rates of below 30 calls/s, the 

processing delays are much longer than in NORMAL and Ext-INFO. As shown in Fig. 

15(d), the processing time of TLS is much longer than that of the other schemes even when 

the call rate is below 20 calls/s. When the call rate is 30 calls/s or more, the processing 

times become extremely long, and the server falls into a DoS state. 

As mentioned earlier, the common methods for counteracting against SIP call-disruption 

attacks utilize encryption-based approaches [3][4][5][6]. However, encryption-based 

schemes require very high computational complexity and a large memory space, as shown 

in Fig. 14 and Fig. 15. Compared with encryption-based schemes, the proposed method 

requires much lower system requirements. Note that the performance of the proposed 

method reflects the worst case in which attackers generate fake call-disruption requests for 

all normal SIP sessions, while the performance of the TLS-based scheme is based on an 

ordinary situation since all SIP messages should be encrypted when using this scheme. In 

normal operational environments of SIP-based services, it is very difficult for attackers to 

generate call-disruption requests for all SIP sessions because attackers should capture 

packets from the UAs to generate a successful attack; however, the UAs are located on 

different and distributed networks.  

6. Conclusion 

In this paper, we proposed an extended INFO-based detection and countermeasure scheme 

for various types of SIP call-disruption attacks. Some example scenarios of such attacks 

and the corresponding countermeasure procedures using the proposed scheme were 

illustrated. The performance of the proposed scheme was compared to the TLS-based 

scheme, which is a widely used scheme for providing countermeasures against SIP 

call-disruption attacks. Based on our experiments, we determined that the proposed method 

detects call-disruption attacks precisely. In addition, we demonstrated that the proposed 

method can work with much lower system requirements (lower CPU load, memory 

occupation, and processing delay) than a TLS-based scheme under an environment of 

various types of call-disruption attacks. 

Voice-over IP (VoIP) is a technology that provides traditional telephone services 

on Internet Protocol (IP) networks. A call-disruption attack is one of the most severe types 

of threats, and can cause great inconvenience to VoIP users, severely degrading their 

quality of experience. If VoIP users are frequently targeted by attacks and they complain 

about the inconvenience caused by them, VoIP service providers may have to construct a 

defense mechanism for attack prevention. The goal of our proposed method is to protect 

both users and service providers from call-disruption attacks while keeping the need for 

additional memory and processing overhead at a minimum. Based on our experimental 
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results, which show that the proposed method can achieve its security goal very effectively 

as compared to existing solutions, we expect that providers may adopt the proposed method 

as a good candidate solution against call-disruption attacks, despite extra costs such as the 

storage of the last messages sent to the UAs and an incurred delay owing to a required 

interaction between the UAs and servers. 
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