
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1854

Copyright ⓒ 2012 KSII

This research was supported by the MKE (Ministry of Knowledge Economy), Korea, under the ITRC

(Information Technology Research Center) support program supervised by the NIPA (National IT Industry

Promotion Agency (NIPA-2012-(H0301-12-2003)).

http://dx.doi.org/10.3837/tiis.2012.07.008

Detection And Countermeasure Scheme For
Call-Disruption Attacks On SIP-Based Voip Services

Jea Tek Ryu
1
, Byeong-hee Roh

2
, Ki Yeol Ryu

2
 and Myungchul Yoon

3

1IP Service Team, Korea Institute of Patent Information, Seoul 146-8, Korea
2Dept. of Information and Computer Eng., Ajou University, Suwon 443-749, Korea

3Dept. of Electronics Engineering, Dankook University, Korea

[e-mail: ryujeatek@hotmail.com, : {bhroh, kryu}@ajou.ac.kr, myoon@dankook.ac.kr]

*Corresponding author: Ki Yeol Ryu

Received August 17, 2011; revised November 16, 2011; revised January 17, 2012; revised April 26, 2012;

accepted June 19, 2012; published July 25, 2012

Abstract

Owing to its simplicity and flexibility, the session initiation protocol (SIP) has been widely

adopted as a major session-management protocol for Internet telephony or Voice-over IP

(VoIP) services. However, SIP has faced various types of security threats. Call-disruption

attacks are some of the most severe threats they face, and can greatly inconvenience

consumers. In this paper, we analyze such SIP call-disruption attacks, and propose a

method for detecting and counteracting them by extending the SIP INFO method with

authentication. Using the proposed method, both the target user and the SIP server can

detect the existence of a call-disruption attack on a user and counteract the attack. We

demonstrate the effectiveness of the proposed method from the viewpoint of computational

complexity by configuring a test-bed with an Asterisk SIP proxy server and an SIP

performance (SIPp) emulator.

Keywords: SIP, VoIP, Call-Disruption Attack, INFO Method, Authentication, Asterisk

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1855

1. Introduction

The session initiation protocol (SIP) is an application-layer signaling protocol used for

establishing, maintaining, and terminating multimedia sessions [1]. Owing to its simplicity

and flexibility, SIP has found widespread use as a session-management protocol for a

variety of multimedia applications including Internet telephony, instant messaging, games,

and IP multimedia subsystems (IMSs).

However, because of its similar structure with Hypertext Transfer Protocol (HTTP),

including text-based message formats, SIP has faced various types of threats, such as

distributed denial-of-service (DDoS), fuzzing, session hijacking, and call-disruption

attacks [2]. Among these, call-disruption attacks are some of the most severe threats,

greatly inconveniencing consumers. Table 1 lists the typical types of SIP call-disruption

attacks that use various SIP request messages. The detailed procedures of these attacks are

provided in Section 3.

Table 1. Description of call-disruption attacks.

Attack Type Attack Description

CANCEL Cancel ongoing session setup requests using fake CANCEL messages

BYE Terminate existing sessions using fake BYE messages

REGISTER
Remove or modify user registration information from the registration

server using fake de-REGISTRATION messages

re-INVITE
Disrupt or intercept sessions under SIP-based mobility support

environments using fake re-INVITE messages

Several research studies have dealt with such call-disruption attacks. Authentication- and

encryption-based approaches [3][4][5][6] are ineffective, because SIP servers generate a

certain amount of computational overhead for the encryption and decryption of individual

messages. It was revealed in [7], [8], and [9] that the overhead generated by message

authentication has a significant effect on the performance degradation in call setup delay.

To deal with this, VoIP-specific Intrusion Detection System (IDS) architectures have been

proposed [10][11]. However, these architectures require additional systems beside the

server and user, as well as a very complicated structure to detect the various patterns of

possible attacks. As in traditional IDSs, these IDS-based systems do not provide effective

countermeasure mechanisms. While retransmission-based countermeasure schemes

[12][13] use external systems to reduce the overhead, these methods may cause other

call-disruption attacks.

1856 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

In this paper, we propose an effective method for detecting and counteracting the types of

call-disruption attacks listed in Table 1. The proposed method extends the SIP INFO

method to detect a possible call-disruption attack on a target user, and notifies both the user

and the server of the attack symptoms for a counteraction. The proposed method can be

effectively applied to both static and mobile environments. The performance of the

proposed mechanism is evaluated by configuring a test-bed with a Session Initiation

Protocol performance (SIPp) [14] emulator and an Asterisk proxy server [15].

This paper is organized as follows. Section 2 describes some background issues

related to the proposed scheme. Section 3 presents the call-disruption attack models

considered in this paper, and Section 4 explains our proposed method for detecting and

counteracting various call-disruption attacks as example usage scenarios. Next, Section 5

illustrates the effectiveness of the proposed method through a performance evaluation, and

Section 6 concludes this paper.

2. Background

2.1 SIP Overview

SIP [1] is an application-layer protocol that enables multimedia sessions or calls to be set

up, maintained, modified, or terminated. Similar to HTTP, SIP entities exchange text-based

messages as request and response pairs. Fig. 1 shows an example system architecture for

SIP-based applications and services [16]. Each user agent (UA) registers with its domain’s

registrar server (1), and the registrar server then stores the information in its location server

(2). The location servers store the location information of the UAs and determine where

calls should be routed. The detailed usage of the location servers is illustrated in Section

3.2.B. UA(A) initiates a call request to UA(B) by sending an INVITE to its proxy server (3),

and the proxy server resolves the location of UA(B) by consulting its location server (4).

Next, A’s proxy server transmits the request to B’s proxy server (5), and the receiving

proxy server then consults its location server (6) and forwards the request to UA(B) (7).

After a three-way handshake between UA(A) and UA(B) in which 200 OK and ACK

messages are exchanged, a media session between the two UAs is established (8).

An SIP message has a text-based format with the same three-part structure as that

of an HTTP message: start line, message header, and message body. The start line

identifies the message type and destination of the message. The message header includes

signaling information, and the body contains additional information, e.g., information on

the media used for the communication. The nature of this text-based message format makes

it possible for attackers to form or alter the major attributes of SIP messages that can easily

affect the call processing, which causes the call-disruption attacks listed in Table 1. With

alterations of the attributes by an attacker, it is very difficult to differentiate fake requests

from normal requests by legitimate UAs.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1857

Fig. 1. Example system architecture for SIP-based applications [16]

2.2 SIP INFO Method

Various message forms and methods have been defined for SIP session control. The INFO

method is used to carry optional application-level information on an SIP session [17]. The

INFO method is not used to update the characteristics of an SIP dialog or session, but rather

to allow applications to exchange information that might update their status.

To exchange information on a session, a UA sends an INFO request associated

with an InfoPackage, or with the legacy INFO usage, for backward compatibility with the

obsolete RFC 2976 [18]. An InfoPackage contains the content and semantics of the

information carried in an INFO message. Optional INFO-based information on the session

is included in the header and/or body of the INFO message. If an INFO request associated

with an InfoPackage contains a message body, the body is identified by a

Content-Disposition header field with an Info-Package value. The use of an

InfoPackage associated with an INFO request for this proposed method is shown in Fig. 7.

The UA receiving the INFO request replies with a 469 Bad InfoPackage response

when it is unwilling to receive the INFO request. Otherwise, the UA must be prepared to

receive the INFO request associated with the InfoPackage. If the INFO request is

syntactically correct and well structured, the UA sends a 200 OK response. Otherwise, the

UA sends an error response such as a Request Failure (4xx), Server Failure (5xx), or Global

Failure (6xx) in accordance with the ordinary SIP error-handling procedures.

3. SIP Call-Disruption Attack Models

3.1 CANCEL and BYE Call-Disruption Attacks

The setup for an SIP session is conducted through a three-way handshake using INVITE,

200 OK, and ACK, as shown in Fig. 2(a). A CANCEL message is used to cancel an

ongoing session setup as shown in Fig. 2(b). Using a CANCEL message, attackers can

SIP Domain A

Registrar

Server

UA(A) UA(B)

Proxy

Server

Location

Server

SIP Domain B

Proxy

Server

Location

Server

Registrar

Server

1

2

3

4

5

6

7

8

Media Transfer (RTP)

1858 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

disrupt the session setup process as shown in Fig. 2(c). In a CANCEL call-disruption attack

scenario, UA(A) initiates a session setup by sending an INVITE message to UA(B). By

eavesdropping on the INVITE, an attacker can generate a fake CANCEL message to

terminate the setup process. For a CANCEL attack to succeed, the CANCEL message from

the attacker has to be formulated before a 200 OK response from UA(B) is delivered to

UA(A). The major attributes that should be included in CANCEL are the uniform resource

indicators (URIs) of the caller and receiver and the Call-ID, which are identical to those

included in the INVITE. Upon receiving a fake CANCEL message, the SIP server cancels

the INVITE request from UA(A). Therefore, the UAs cannot complete a normal call setup.

(a) Normal session setup (b) Normal CANCEL (c) CANCEL attack

Fig. 2. Example of a CANCEL call-disruption attack

The established session can be terminated by sending a BYE message as shown in Fig. 3(a).

As in CANCEL attacks, an attacker eavesdrops on the three-way handshake session setup

procedure. The attacker can then terminate an existing session by sending a fake BYE

message with the proper session information obtained from the eavesdropped INVITE, as

shown in Fig. 3(b).

(a) Normal BYE (b) BYE attack

Fig. 3. Example of a BYE call-disruption attack

Proxy

ServerUA (A)

INVITE

UA (B)

INVITE

200 OK

Session Established

200 OK

ACK
ACK

Proxy

ServerUA (A)

INVITE

UA (B)

INVITE

CANCEL

200 OK

Session Cancelled

CANCEL

200 OK

Proxy

Server

CANCEL

attack

UA (A)

INVITE

UA (B) Attacker

INVITE

CANCEL

200 OK

Session Cancelled

Overhearing

faked

CANCEL

(UA(A))

Proxy ServerUA (A)

INVITE

UA (B)

INVITE

200 OK
200 OK

Session Established

200 OK

BYE

200 OK

Session Terminated

ACK ACK

BYE

Proxy ServerUA (A)

INVITE

UA (B) Attacker

INVITE

faked

BYE (UA(A))

200 OK
200 OK

Session Established

Overhearing

200 OK
BYE

200 OK

Session Terminated

ACK ACK

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1859

3.2 REGISTER Attack in Pre-call Mobility (or Roaming) Situations

SIP can support the mobility of a mobile host (MH) at the application layer [19]. Generally,

SIP-based mobility is divided into two parts: pre-call mobility (or roaming) before a call,

and mid-call mobility during a call. Fig. 4(a) shows a typical example of a normal pre-call

mobility scenario. UA(A) initially registers with the registrar server by sending a

REGISTER message including its contact information, and the server updates the record of

the UA in the location server. The record is then reflected to the proxy server. After the UA

moves to a different network, it re-registers and its records are updated at the servers. When

UA(B) tries to establish a session with UA(A), it sends an INVITE destined for UA(A), and

the proxy server then forwards the INVITE to the updated UA(A) location. As a result of

this three-way handshake, a normal session between UA(A) and UA(B) is established.

Attackers can establish illegal sessions by utilizing a pre-call mobility mechanism.

An example of an attack scenario is shown in Fig. 4(b). An attacker changes the records on

UA(A) by sending a fake REGISTER including the attacker’s location information. Since

the registrar server cannot distinguish whether the message is issued from an attacker, the

server changes the records on UA(A) with those provided by the attacker. A 200 OK

message, which is a response for a successful change, is sent only to the attacker, but not to

UA(A). Next, an INVITE from UA(B) to UA(A) is forwarded to the attacker, but not to

UA(A). As a result of this process, an abnormal session between the attacker and UA(B) is

established. A pre-call mobility attack has been classified by some researchers as a type of

session hijacking attack. From the viewpoint of an attacked user, however, such an attack

creates a situation in which normal calls cannot be made from or to the user. We therefore

classify this type of attack as a call-disruption attack.

(a) Normal pre-call mobility (b) Pre-call mobility attack

Fig. 4. Example of a call-disruption attack on pre-call mobility

Registrar/Location

Server

REGISTER

{A, IP(Net1)}

UA (B)

Update

(non-SIP)
200 OK

Proxy

Server

Response

(non-SIP)

UA(A) in

Network 1

UA(A) in

Network 2

200 OK

UA(A)

moved to

Network 2

Update

(non-SIP)

Response

(non-SIP)

INVITE

{UA(A)}

INVITE {UA(A)}

200 OK
200 OK

ACKACK

Media Session (RTP)

REGISTER

{A, IP(Net2)}

Registrar/Location

Server

REGISTER

{A, IP(Net1)}

UA (B)

Update

(non-SIP)
200 OK

Proxy

Server

Response

(non-SIP)

UA(A) in

Network 1

200 OK

Update

(non-SIP)

Response

(non-SIP) INVITE

{UA(A)}
INVITE {UA(A)}

200 OK
200 OK

ACKACK

Abnormal Session Established

Attacker in

Network 2

faked

REGISTER

{A, IP(Net2)}

1860 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

3.3 re-INVITE Attack during Mid-call Mobility

Once a session has been established using the three-way handshake INVITE/200 OK/ACK

sequence, it can be modified by a re-INVITE, which is another INVITE/200 OK/ACK

sequence. Using a re-INVITE, mid-call mobility can be supported without having to go

through an intermediate SIP proxy, as shown in Fig. 5(a). When moving from one network

to another, UA(A) acquires a new IP address, and then sends a re-INVITE message to the

corresponding UA(B), allowing the SIP session to continue with the new address. However,

attackers can intercept the session by sending a fake re-INVITE message, as shown in Fig.

13(b). Based on the SIP specifications, there is no way for UA(B) to distinguish whether

the re-INVITE is from UA(A) or from an attacker.

(a) Normal re-INVITE procedure (b) Re-INVITE attack

Fig. 5. Example of a re-INVITE attack during mid-call mobility

4. Detection and Counteraction Scheme using an Extension of the
INFO Method

4.1 Overall Architecture

4.1.1 Simple extension of INFO Method (Ext-INFO)

To detect call-disruption attacks using an SIP request such as a CANCEL, BYE,

de-REGISTRATION, or re-INVITE message, we propose the use of a scheme that utilizes

a simple extension of the INFO method, or Ext-INFO, as shown in Fig. 6. When an SIP

proxy server receives a request message related to a call-disruption attack, it sends an

Ext-INFO request to the UA that sent the message. The body of the Ext-INFO request

includes the entire message that the proxy server has received most recently from the UA.

Note that the message may be sent from either the UA itself or an attacker. There are three

use cases for Ext-INFO:

Case 1 (without an attack): The UA replies to an Ext-INFO response with a 200 OK

message if the body in the Ext-INFO request is identical to the message most recently

UA (B)UA(A) in

Network 1

UA(A) in

Network 2

new address

acquisition

by DHCP

UA(A)

moved to

Network 2

re-INVITE

200 OK

ACK

established

session

DHCP server

in Network 2

reconfigured session

UA (A) UA (B) Attacker

faked

re-INVITE

established

session

200 OK

Session

Terminated
Session

Intercepted

ACK

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1861

sent to the server, as depicted in Fig. 6(a). Note that the UA should store the latest

message sent to the server for Ext-INFO requests. The server then accepts the SIP

message and provides the appropriate service.

Case 2 (without a fake response by an attacker): If the body in the Ext-INFO request is not

identical to the message it sent to the server most recently, the UA replies to the

Ext-INFO response with a 422 INVALID message, which is shown in Fig. 6(b). When

the UA finds any differences between the body of the received Ext-INFO request and the

latest message sent to the server, it can determine that it is the target of a call-disruption

attack. Similarly, the server also discovers the attack by receiving the 422 INVALID

message from the UA.

Case 3 (with a fake response by an attacker): When a server sends an Ext-INFO request,

an attacker may eavesdrop on the request. The attacker may then send an Ext-INFO

response with a 200 OK to complete the call disruption, as shown in Fig. 6(c). However,

the server can check for any conflicts between the two received messages, and if such a

conflict exists, the server can easily recognize it as evidence of an attack.

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 6. Basic procedure for detecting a call-disruption attack using Ext-INFO

An example of the Ext-INFO request format is shown in Fig. 7. As mentioned in Section

2.B, an INFO request may contain an InfoPackage carrying application-level information,

including the content and semantics of the information to be carried. As shown in Fig. 7,

the proposed Ext-INFO request is indicated in the Info-Package header field as

EXT-INFO, with InfoPackage provided in the Content-Disposition header field.

In Fig. 7, it is assumed that a call setup between two user agents, UA(A) and UA(B), is

progressing through a proxy server, and that a CANCEL message from UA(A) has been

received at the server. As mentioned before, the CANCEL message might be sent from

either the UA(A) itself or an attacker. As shown in Fig. 7, the Ext-INFO request consists of

a header and body, as in any other SIP message. Unlike an ordinary INFO method, however,

since the server initiates the request and wants to receive a response to it, its URI appears in

the From field in the INFO header. In addition, since UA(A) has been recorded as the

sender of the CANCEL message, the URI of UA(A) is designated to the recipient of the

Proxy Server

SIP Request

UA

Ext-INFO Request

(body includes SIP

message)

Ext-INFO Response

(200 OK)

Proxy Server

faked

SIP Request

UA

Ext-INFO Req.

Attacker

both UA and

server detect

the attack

Ext-INFO Resp.

(422 INVALID)

Proxy ServerUA

Ext-INFO Resp.

(422 INVALID)

Attacker

Overhearing

inconsistent event

occurs, the server

detects the attack

faked

SIP Request

the UA

detects the

attack

Ext-INFO Resp.

(200 OK)

Ext-INFO Req.

1862 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

Ext-INFO request, which appears in the To field in Ext-INFO header. The entire CANCEL

message received by the server is included in the Ext-INFO body. The Call-ID should be

identical to the call identifier of the session between the two UAs.

When UA(A) receives an Ext-INFO request, it checks whether the message included

in Ext-INFO body is identical to its latest message sent to the server lastly. Based on the

result of the check, either a 200 OK or a 422 INVALID response is sent to the server. Since

the UA receiving an INFO request should reply with a 200 OK or other error-handling

response, no additional overhead is incurred when using the Ext-INFO method as

compared to a conventional INFO method.

Fig. 7. An example of an extended INFO message format

For cases 2 and 3 in Fig. 6, the server can protect the session for the UA by ignoring the

fake SIP message sent by the attacker. In case 3 in Fig. 6(c), if the 200 OK message issued

by the attacker reaches the SIP server earlier than the 422 INVALID message sent by a

normal UA, the SIP server will accept the fake 200 OK message and fail to detect the attack.

To avoid this situation, the proposed method uses the following waiting mechanism: an

Ext-INFO Req. message loss may occur since SIP messages are generally sent over the

User Datagram Protocol (UDP). In the case of a message loss, the SIP server resends the

message according to the retransmission mechanism for non-INVITE request messages

[21]. Although the server receives the first Ext-INFO response after sending the request, it

delays its decision until the retransmission time for the requested message expires or until a

second Ext-INFO response arrives. Since each response is generally received within the

retransmission time interval during normal network conditions, the problem described

above can be solved.

4.1.2 Hybrid of Extended INFO with Authenticated Registration Procedure

The Ext-INFO method has a severe weakness, as shown in Fig. 8. When the server receives

INFO sip:UA_A@ua_a.com SIP/2.0

Via: SIP/2.0/UDP server1.proxy.com:5060

To: User Agent (A) <sip:UA_A@ua_a.com>

From: Proxy Server <sip:Proxy_Server@proxy.com>

Call-ID: 134567@ajou.ac.kr

CSeq: 1 INFO

Info-Package: EXT-INFO

Content-type: application/EXT-INFO

Content-Disposition: Info-Package

Content-Length: 197

CANCEL sip:UA_B@ajou.ac.kr SIP/2.0

Via: SIP/2.0/UDP user1.ua_a.com:5060

To: User Agent(B) <sip:UA_B@ajou.ac.kr>

From: User Agent(A) <sip:UA_A@ua_a.com>

Call-ID: 134567@ajou.ac.kr

CSeq: 1 CANCEL

Content-Length: 0

INFO Request Header

INFO Request Body

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1863

an SIP request from a legitimate UA, it sends an Ext-INFO request to the UA. If an attacker

that knows the mechanism overhears the request, it can send a malformed response with a

422 INVALID response, which conflicts with the 200 OK response sent by the UA. The

server may then decide that the received request is fake and ignore it, preventing a proper

SIP service from being provided to the UA. This may cause another type of call-disruption

attack.

Fig. 8. Drawback of Ext-INFO

To overcome this drawback of the Ext-INFO method, we propose a hybrid method using an

extended INFO with an SIP authentication mechanism, or Hyb-INFO. The SIP

specification provides a user-authentication mechanism based on HTTP digest access

authentication [16], which is a simple challenge-response protocol of authentication using

a one-way function, e.g., MD5 or SHA1. There are two types of HTTP digest

authentication mechanisms: user-to-user, and user-to-proxy [2]. In the former case, the

authentication procedure takes place between two UAs, or between one UA and an SIP

registration server. The latter case operates between a UA and an SIP proxy server for the

call-setup processes. Based on the SIP-based service architecture shown in Fig. 6, let us

consider a user-to-proxy authentication procedure. The proposed Hyb-INFO procedure is

shown in Fig. 9. A Hyb-INFO request includes the body of the received SIP request

message and a 407 Proxy Authentication Required message with a nonce value and other

authentication algorithm information.

Upon receiving a Hyb-INFO request, the UA calculates the information based on

the nonce and the algorithm information from the 407 Proxy Authentication Required

header. The calculated information is included in Proxy-Authorization. In addition, the UA

checks whether the message body included in the Hyb-INFO request is identical to its last

message. Depending on the result, either a 200 OK or 422 INVALID message is formed, as

shown in Fig. 9(a) and Fig. 9(b), respectively. The UA then sends the Hyb-INFO response

with a Proxy-Authorization and 200 OK (or 422 INVALID) message to the server.

Note that, while attackers may overhear the Hyb-INFO request of the server, they

cannot generate a suitable Hyb-INFO response without access to the authentication

information. The drawback of Ext-INFO can therefore be resolved.

Proxy Server

SIP Request

UA Attacker

Overhearing

inconsistent event occurs,

so the normal SIP

message can’t be served

Ext-INFO Req.

Ext-INFO Resp.

(200 OK)

faked

Ext-INFO Resp.

(422 INVALID)

1864 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

After the UA or server detects any evidence of a call-disruption attack, all of the SIP

messages exchanged between them can be encrypted using an optional process. Note that

the exchanged messages are only encrypted during sessions in which an attack has been

detected. That is, SIP messages exchanged between sessions with no evidence of an attack

do not need to be encrypted. This can reduce the computational complexity compared to

cases in which all messages are encrypted. Any encryption mechanism can be used for this

optional process, but such a discussion is beyond the scope of this paper.

(a) Non-attack case (b) Attack case

Fig. 9. Hyb-INFO procedure

4.1.3 Overall Procedure for the Detection of and Countermeasures against
Call-Disruption Attacks

The overall proposed procedure, which combines Ext-INFO and Hyb-INFO, as used at the

SIP proxy server, is shown in Fig. 10(a). We define a session as the combination of three

tuples <Call-ID, From, To>, which are included in SIP messages. Based on the

definition of the session, the encrypted and attacked sessions are maintained. Since

practical SIP proxy servers such as those described in [15] have a mechanism to maintain

their sessions using information similar to the tuples, the procedure can be easily

implemented by adding two bits that indicate whether the session has been attacked or is

encrypted, as shown in Fig. 10(a).

If an incoming SIP request is listed as an encrypted session, then the message is

processed normally using a proper decryption process, since it is very difficult for attackers

to intrude into such a session. An SIP session is represented by four fields: the source IP

address, caller’s URI, receiver’s URI, and call-ID. Each session is set as non-encrypted

upon first arrival. A session is determined as being encrypted using one of the resulting

processes of Hyb-INFO, as shown in Fig. 10(b). For incoming messages that are not listed

as encrypted or attacked sessions, the Ext-INFO procedure is initiated. If the response to

the Ext-INFO request is a conflict or a 422 INVALID message, the session is registered as

an attacked session. On the other hand, for a 200 OK response, the message is properly

serviced. Likewise, the proposed method reduces the computational complexity

Proxy Server

SIP Request

(non-encrypted)

UA

Hyb-INFO Request

(with ‘407 Proxy Auth.

Required’ and SIP message)

Hyb-INFO Response

(with ‘Proxy-Authorization

and ‘200 OK’)

Attacker

Overhearing

though

overhearing,

it can’t generate

Hyb-INFO

responseSIP Request

(encrypted in option)

Proxy Server

though

overhearing,

it can’t generate

Hyb-INFO

response

Attacker

Overhearing

faked

SIP Request

UA

SIP Request

(encrypted in option)

both UA and server

detect the attack

Hyb-INFO Request

(with ‘407 Proxy Auth.

Required’ and SIP message)

Hyb-INFO Response

(with ‘Proxy-Authorization

and ‘422 INVALID’)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1865

significantly through the partial use of authentication or encryption processes only for

severely attacked sessions, unlike traditional authentication- or encryption-based

approaches, which use authentication or encryption/decryption processes for all messages.

(a) Overall procedure (b) Hyb-INFO procedure

Fig. 10. Overall procedure of the proposed method

4.2 Example Usage Scenarios

4.2.1 Detection and Countermeasure of CANCEL and BYE Call-Disruption Attacks

Using the proposed method shown in Fig. 10, a CANCEL attack can be prevented, as

shown in Fig. 11 (a). A model of a CANCEL attack is given in Fig. 2(c) in Section 3.A.

After the server receives a fake CANCEL message from an attacker, it generates an

Ext-INFO request and sends it to UA(A). Even if the attacker overhears the message, it

cannot generate a response to the Ext-INFO request if it does not know the shared key

between the server and UA(A). UA(A) responds with a 422 INVALID message, since it

did not send the SIP message. The server then acknowledges that the CANCEL message is

invalid and ignores it. As a result, a 200 OK response to the INVITE is successfully

delivered from UA(B) to UA(A). Finally, a media session between UA(A) and UA(B) is

established.

As with CANCEL attacks, the server and a UA can easily detect an attacker’s BYE

message using the proposed method, and can therefore protect their session. The procedure

for detecting and countering a BYE attack is shown in Fig. 11(b).

Incoming SIP Message

Attacked Session?
Yes No

No Yes

Hyb-INFO

Inconsistent Event ?

Hyb-INFO

Register it as

Attacked Session

Send Ext-INFO

Request

Register it as

Attacked Session

‘200 OK’

received ?

Yes

Process the

Message

Ignore the

Message

No

Encrypted Session?
Yes

Process the Message

with encryption procedureNo

‘200 OK’

received ?

Yes

Process the

Message

Hyb-INFO

Ignore the

Message

No

Send Hyb-INFO

Request

Register it as

Encrypted Session

1866 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

(a) Protection from a CANCEL attack (b) Protection from a BYE attack

Fig. 11. Protection from CANCEL and BYE call-disruption attacks

4.2.2 Detection and Countermeasure of REGISTER (or Pre-call Mobility) Attack

Using the proposed method, the REGISTER attack illustrated in Fig. 4(b) in Section 3.B

can be detected and blocked, as shown in Fig. 12. When the registrar server receives a

REGISTER to update the UA’s record, it sends an Ext-INFO request destined for both the

previous and current UA locations without changing the record. Note that since the UA’s

record is not changed, the server knows both the previous and newly requested UA records,

and can send an INFO request to both the previous and current UA locations. Since no call

information is requested for the pre-call mobility procedure, only the use of the Hyb-INFO

scheme can be considered. If the REGISTER is fake, that is, the UA’s location has not

changed, the legitimate UA provides a 422 INVALID response, to which the attacker

cannot generate a proper response. Based on the UA’s response, the server ignores the

attacker’s REGISTER and does not change the UA’s record. Normal sessions can then be

established between this UA and others. Note that even if the attacker sends a 200 OK

response, the server can detect a conflict and invoke appropriate countermeasures.

Fig. 12. Protection from a REGISTER call-disruption attack

Proxy ServerUA (A)

INVITE

UA (B) Attacker

INVITE

though

overhearing,

it can’t generate

INFO response

200 OK
200 OK

Session Established

Overhearing

faked

CANCEL (UA(A))

Ignore

CANCEL

Overhearing

ACK ACK

Ext/Hyb-INFO

Req.

Ext/Hyp-INFO

Resp. (INVALID)

Proxy ServerUA (A) UA (B) Attacker

Session Established

Session Continued

Ext/Hyb-INFO

Req.

Ext/Hyp-INFO

Resp. (INVALID)

faked

BYE (UA(A))

INVITE INVITE

200 OK
200 OK

Overhearing

ACK ACK

Ignore

BYE

Registrar/Location

Server

REGISTER

{A, IP(Net1)}
Update

(non-SIP)
200 OK

Proxy

Server

Response

(non-SIP)

UA(A) in

Network 1

Attacker in

Network 2

faked REGISTER

{A, IP(Net2)}

Normal Session Established

Ignore

REGISTER

Hyb-INFO

Req.

Hyb-INFO Resp.

(INVALID)

INVITE {UA(A)}

200 OK

ACK

UA (B)

INVITE

{UA(A)}

200 OK

ACK

Hyb-INFO

Req.

it may not

generate the

response

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1867

4.2.3 Detection and Countermeasure of re-INVITE Attack during Mid-call Mobility

A re-INVITE attack can be detected using the proposed method, as shown in Fig. 13. When

UA(B) receives a re-INVITE message with a change in location information, it sends a

Hyb-INFO request to both the previous and currently indicated locations. Note that, since

the re-INVITE process is conducted between the UAs directly, we can only use the

Hyb-INFO scheme. If a re-INVITE comes from an attacker, UA(A) sends a Hyb-INFO

response with a 422 INVALID message. With this response, UA(B) ignores the re-INVITE,

and the correct session with UA(A) can continue without disruption.

Fig. 13. Protection from a re-INVITE call-disruption attack

5. Performance Evaluation

To evaluate the effectiveness of the proposed scheme, we constructed the following

test-bed. The test-bed consists of two PCs for both normal and attack SIP message

generation, and one SIP proxy server, each of which are connected using a 100 Mbps fast

Ethernet link. For normal SIP call generation, we used an emulation PC with a 2.5 GHz

Intel Core Duo CPU and 2 GB of RAM, running open VoIP emulation software called

SIPp [14], which can not only make virtual SIP calls but can also measure the system

performance. For attack message generation, we used another PC with the same

specifications used in the normal call generating PC. We implemented a program to capture

normal INVITE messages and generate fake call-disruption request messages on the attack

PC using the libpcap library. We configured an Asterisk SIP proxy server [15] on a PC with

a 2.66 GHz Intel Q6600 CPU and 4 GB of RAM, running Linux with an Ubuntu 10.4

kernel. Although the CPU has dual cores, we only considered one processor for the

experiments, as described in Article (CrossRef Link).

[20], because SIP performance under multiple processors or multi-cores is beyond the

scope of this paper. The proposed schemes, Ext-INFO and Hyb-INFO, were implemented

on the normal SIP message generating and SIP proxy server PCs. A Transport Layer

Security (TLS)-based encryption scheme [7] provided by SIPp was configured on these

UA (A) UA (B) Attacker

faked re-INVITE

established

session

Session Continued

Hyp-INFO Resp.

(INVALID)
Ignore

re-INVITE

Hyb-INFO Req. Hyb-INFO Req.

1868 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

systems for performance comparisons. In the TLS-based scheme, since all SIP messages

are encrypted, attackers cannot disrupt any sessions without knowing the secret keys

shared between the server and the UAs. However, the UAs and server should decrypt and

encrypt all SIP messages exchanged between them.

We have seen that the proposed method exactly detects the call-disruption attacks

for all the generated calls, in which we made the attacks according to attack models

described in Section 3.2. In our experiments, no false-positive events were found, i.e., 100%

of the attack trials were detected and fixed.

To show the effectiveness of the proposed scheme from the viewpoint of

computational complexity, we carried out the following experiments. We varied the

average SIP call generation rates (5, 10, 20, 30, …, and 60 in calls/s), and set the average

call duration to 30 s with an exponential distribution. To reflect the practical use of SIP

server resources, such as CPU and memory, we considered the whole life of a call, from its

session setup to its termination. That is, after the duration exponentially given for a call is

expired, the call sends a BYE message to terminate its session. Note that resources are

utilized during a call and at the session setup and termination. However, since Real-time

Transport Protocol (RTP) packets for a conversation are exchanged through a separate

connection between terminals, but not through the SIP server, they cannot affect the usage

of the SIP server’s resources. Fig. 14 shows performance comparisons for the CPU load

and memory occupation. In Fig. 14, the original SIP mechanism without authentication is

marked as NORMAL. As shown in Fig. 14 (a), the CPU load for each scheme increases as

the average call rate increases. However, the degree of increase for TLS is considerably

higher than that of the other schemes. When the call rate increases to greater than 30 calls/s,

the CPU load for TLS reaches 100%, which means that no SIP messages can be served.

The CPU loads for Hyb-INFO are larger than those for Ext-INFO as Hyb-INFO requires an

additional authentication process compared to Ext-INFO. The NORMAL mechanism

shows the lowest amount of CPU load. Fig. 14 (b), shows that the amount of memory

required for processing SIP messages increases with increasing average call rate. The

memory occupancy of Ext-INFO is almost the same as that of NORMAL, and is

considerably lower than that of Hyb-INFO and TLS. TLS shows the largest memory

occupancy. The results of Fig. 14 indicate that the proposed scheme can protect users from

call-disruption attacks with much lower system utilization compared to TLS.

0

20

40

60

80

100

0 10 20 30 40 50 60 70

C
P

U
 L

o
a
d

 (
%

)

Call Rate (Calls/Sec)

NORMAL

Ext-INFO

Hyb-INFO

TLS

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

M
e

m
o

ry
 O

c
c
u

p
a
n

c
y

(%
)

Call Rate (Calls/Sec)

NORMAL

Ext-INFO

Hyb-INFO

TLS

(a) CPU load (b) Memory usage

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1869

Fig. 14. Performance in terms of CPU and memory load

In Fig. 15, the average processing times as cumulative density functions (CDFs) are

compared for NORMAL, Ext-INFO, Hyb-INFO, and TLS for various call rates of 10, 20,

30, 40, and 50 calls/s. We define the processing time for an SIP message as the time spent

between its arrival at and its departure from the SIP server. The processing time includes

the queuing (or buffering) delay, decryption/encryption delay for authenticated messages,

attack decision delay, and transmission delay. The queuing delay is the time that a message

spends in the waiting room until the service is initiated. The message should be decrypted,

analyzed, and encrypted during the service time if it is authenticated. The service time

increases with increasing number of authenticated messages. As a result, the queuing

delays and processing times for individual messages will increase as well.

(a) NORMAL (b) Ext-INFO

(c) Hyb-INFO (d) TLS

Fig. 15. Average processing times (in milliseconds)

As shown in Fig. 15(a) and Fig. 15(b), when the call rate is below 40 call/s, the processing

times of NORMAL and Ext-INFO are consistently less than 10 ms. When the call rate is 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300

C
u

m
u

la
ti

v
e
 D

e
n

s
it

y
 F

u
n

c
ti

o
n

Processing Time (msec)

NORMAL

Call Rate=10

Call Rate=20

Call Rate=30

Call Rate=40

Call Rate=50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300

C
u

m
u

la
ti

v
e

 D
e

n
s

it
y
 F

u
n

c
ti

o
n

Processing Time (msec)

Ext-INFO

Call Rate=10

Call Rate=20

Call Rate=30

Call Rate=40

Call Rate=50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300

C
u

m
u

la
ti

v
e
 D

e
n

s
it

y
 F

u
n

c
ti

o
n

Processing Time (msec)

Hyb-INFO

Call Rate=10

Call Rate=20

Call Rate=30

Call Rate=40

Call Rate=50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300

C
u

m
u

la
ti

v
e
 D

e
n

s
it

y
 F

u
n

c
ti

o
n

Processing Time (msec)

TLS

Call Rate=10

Call Rate=20

Call Rate=30

Call Rate=40

Call Rate=50

1870 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

calls/s, they are increased up to 250 ms. In addition, Ext-INFO shows longer processing

times than NORMAL. Note that messages are still served even when the processing times

are increased up to 250 ms. However, the processing times for Hyb-INFO are extremely

long when the call rate is 40 calls/s or more, as can be seen from Fig. 15 (c), and messages

can therefore not be served. An extremely long message processing delay creates a type of

DoS (Denial of Service) at the server. Even with call rates of below 30 calls/s, the

processing delays are much longer than in NORMAL and Ext-INFO. As shown in Fig.

15(d), the processing time of TLS is much longer than that of the other schemes even when

the call rate is below 20 calls/s. When the call rate is 30 calls/s or more, the processing

times become extremely long, and the server falls into a DoS state.

As mentioned earlier, the common methods for counteracting against SIP call-disruption

attacks utilize encryption-based approaches [3][4][5][6]. However, encryption-based

schemes require very high computational complexity and a large memory space, as shown

in Fig. 14 and Fig. 15. Compared with encryption-based schemes, the proposed method

requires much lower system requirements. Note that the performance of the proposed

method reflects the worst case in which attackers generate fake call-disruption requests for

all normal SIP sessions, while the performance of the TLS-based scheme is based on an

ordinary situation since all SIP messages should be encrypted when using this scheme. In

normal operational environments of SIP-based services, it is very difficult for attackers to

generate call-disruption requests for all SIP sessions because attackers should capture

packets from the UAs to generate a successful attack; however, the UAs are located on

different and distributed networks.

6. Conclusion

In this paper, we proposed an extended INFO-based detection and countermeasure scheme

for various types of SIP call-disruption attacks. Some example scenarios of such attacks

and the corresponding countermeasure procedures using the proposed scheme were

illustrated. The performance of the proposed scheme was compared to the TLS-based

scheme, which is a widely used scheme for providing countermeasures against SIP

call-disruption attacks. Based on our experiments, we determined that the proposed method

detects call-disruption attacks precisely. In addition, we demonstrated that the proposed

method can work with much lower system requirements (lower CPU load, memory

occupation, and processing delay) than a TLS-based scheme under an environment of

various types of call-disruption attacks.

Voice-over IP (VoIP) is a technology that provides traditional telephone services

on Internet Protocol (IP) networks. A call-disruption attack is one of the most severe types

of threats, and can cause great inconvenience to VoIP users, severely degrading their

quality of experience. If VoIP users are frequently targeted by attacks and they complain

about the inconvenience caused by them, VoIP service providers may have to construct a

defense mechanism for attack prevention. The goal of our proposed method is to protect

both users and service providers from call-disruption attacks while keeping the need for

additional memory and processing overhead at a minimum. Based on our experimental

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1871

results, which show that the proposed method can achieve its security goal very effectively

as compared to existing solutions, we expect that providers may adopt the proposed method

as a good candidate solution against call-disruption attacks, despite extra costs such as the

storage of the last messages sent to the UAs and an incurred delay owing to a required

interaction between the UAs and servers.

References

[1] J.Rosenberg, H. Schulzrinne, G. Cvamarillo, A. Johnston, J. Peterson, R. Spark, M. Handley,

and E. Schooler, “SIP : Session Initiation Protocol,” IETF RFC 3261, June 2002.

[2] D. Sisalem, J. Floroiu, J. Kuthan, U. Abend, and H. Schulzrinne, SIP Security, John Wiley &

Sons Ltd., 2009.

[3] D. Geneiatakis, and C. Lambrinoudakis, “A Lightweight Protection Mechanism against

Signaling Attacks in a SIP-Based VoIP Environment,” Telecommunication Systems, Vol.36,

No.4, pp.153-159, Dec. 2007. Article (CrossRef Link).

[4] A. Bremler-Barr, R. Halachmi-Bekel, and J. Kangasharju, “Unregister attacks in SIP,” IEEE 2
nd

Workshop on Secure Network Protocols’2006, Nov. 2006. Article (CrossRef Link).

[5] F. Wang, and Y. Zhang, “A New Provably Secure Authentication and Key Agreement

Mechanism for SIP Using Certificateless Public-Key Cryptography,” Computer

Communications, Vol.31, No.10, pp.2142-2149, June 2008. Article (CrossRef Link).

[6] H. Takahara, and M. Nakamura, “Enhancement of SIP Signaling for Integrity Verification,”

IEEE/IPSJ SAINT’2010, Jul. 2010. Article (CrossRef Link).

[7] S. Salsano, L. Veltri, D. Papalilo, “SIP Security Issues: The SIP Authentication Procedure and Its

Processing Load,” IEEE Network Magazine, Vol.16, No.6, pp.38-44, Nov/Dec 2002. Article

(CrossRef Link).

[8] E. Cha, H. Choi, and S. Cho, “Evaluation of Security Protocols for the Session Initiation

Protocol,” IEEE ICCCN’2007, Aug. 2007. Article (CrossRef Link).

 [9] S. V. Subramanian, and R. Dutta, “Comparative Study of Secure vs. Non-secure Transport

Protocols on the SIP Proxy Server Performance: An Experimental Approach,” IEEE

ARTCom’2010, Oct. 2010. Article (CrossRef Link)

[10] Y. Wu, V. Apte, S. Bagchi, S. Garg, and N. Singh, “Intrusion Detection in Voice over IP

Environments,” International Journal of Information Security, Vol. 8, pp. 153–172, June 2009.

Article (CrossRef Link).

[11] T. Dagiuklas, D. Geneiatakis, G. Kambourakis, D. Sisalem, S. Ehlert, J. Fiedler, J. Markl, M.

Rokis, O. Botron, J. Rodriguez, and J. Liu, “General Reliability and Security Framework for

VoIP Infrastructures,” Tech. Rep. Deliverable D2.2, SNOCER COOP-005892, September

2005.

[12] H. Cha, J. Ryu, B. Roh, J. Kim, H. Jeong, “Detection of SIP De-Registration and

Call-Disruption Attacks using a Retransmission Mechanism and a Countermeasure Scheme,”

IEEE SITIS’2008, Nov. 2008. Article (CrossRef Link).

[13] J. Ryu, B. Roh, M. Hong, H. Kim, J. Kim, “Analysis and Its Solution on Security Threats in

SIP-based Mobility Support Environments,” IEEE INOVATION’2008, Dec. 2008. Article

(CrossRef Link).

[14] SIPp : SIP performance. http://sipp.sourceforge.net/.

[15] Asterisk : The open source telephony project. http://www.asterisk.org/.

[16] A. D. Keromytis, “A Comprehensive Survey of Voice over IP Security Research,” IEEE Comm.

http://dx.doi.org/10.1007/s11235-008-9065-5
http://dx.doi.org/10.1109/npsec.2006.320344
http://dx.doi.org/10.1016/j.comcom.2008.01.054
http://dx.doi.org/doi:10.1109/SAINT.2010.33
http://dx.doi.org/10.1109/MNET.2002.1081764
http://dx.doi.org/10.1109/MNET.2002.1081764
http://dx.doi.org/doi:10.1109/ICCCN.2007.4317885
http://dx.doi.org/doi:10.1109/ARTCom.2010.90
http://dx.doi.org/10.1007/s10207-008-0071-0
http://dx.doi.org/doi:10.1109/SITIS.2008.56
http://dx.doi.org/doi:10.1109/INNOVATIONS.2008.4781767
http://dx.doi.org/doi:10.1109/INNOVATIONS.2008.4781767

1872 Ryu et al.: Detection and Countermeasure Scheme for Call-Disruption Attacks

Surveys & Tutorials, accepted for publication.

[17] C. Holmberg, E. Burger, H. Kaplan, “Session Initiation Protocol (SIP) INFO and Package

Framework,” IETF RFC 6086, Jan. 2011.

[18] S. Donovan, “The SIP INFO Method,” IETF RFC 2976, Oct. 2000.

[19] H. Schulzrinne, and E. Wedlund, “Application-layer mobility using SIP,” ACM SIGMOBILE

Mobile Computing and Communications Review, Vol.4, No. 3, pp.47-57, Jul. 2000. Article

(CrossRef Link).

[20] C. Shen, and H. G. Schulzrinne, “On TCP-based SIP Server Overload,” ACM IPTComm’2010,

Aug. 2010. Article (CrossRef Link).

[21] J. Ryu, B. Roh B, and K. Ryu, “Detection of SIP Flooding Attacks based on the Upper Bound of

the Possible Number of SIP Messages,” KSII Tr. Internet and Information Systems, Vol.3,

No.5, pp.423-574, Oct. 2009.

Jea-Tek Ryu received his B.S., M.S. and Ph.D degrees in Computer Engineering

from Ajou University, Suwon, Korea, in 2005, 2007, and 2011, respectively. Since

Feburary 2011, he has been with the Division of Information and Communication

Technology at Korea Institute of Patent Information (KIPI), Seoul, Korea, as a

researcher. His research interests include ubiquitous sensor networks, network

security, multimedia network systems and data mining.

.

Byeong-hee Roh received a B.S. degree in Electronics Engineering from

Hanyang University, Seoul, Korea, in 1987, and M.S. and Ph.D. degrees in

Electrical Engineering from Korea Advanced Institute of Science and Technology

(KAIST), Taejon, Korea, in 1989 and 1998, respectively. From 1989 to 1994, he

was with Telecommunication Networks Laboratory, Korea Telecom, as a

researcher. From February 1998 to March 2000, he worked with Samsung

Electronics Co., Ltd., Korea, as a Senior Engineer. Since March 2000, he has been

with the Graduate School of Information and Communication, Ajou University,

Suwon, Korea, where he is currently an associate professor. During 2005, he was a

visiting associate professor at Dept. of Computer Science, State University of New

York, at Stony Brook, New York, USA. His research interests include mobile

multimedia networking, network QoS, wireless sensor networks, network

security, and military communications.

http://dx.doi.org/10.1145/372346.372369
http://dx.doi.org/10.1145/372346.372369
http://dx.doi.org/doi:10.1145/1941530.1941541

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 7, July 2012 1873

Ki-Yeol Ryu received B.S. degree in Computer Engineering from the Seoul

National University in 1985 and M.S. and Ph. D. degree in Computer Engineering

from KAIST in 1987 and 1992, respectively. He was a researcher at the

Department of Computer Science in KAIST from 1992-1993. From 1993-1994, he

was a visiting researcher at the Yonezawa Lab. at the Department of Information

Science in the Tokyo University. He was also a visiting professor at the

Department of Computer Science in the University of Colorado at Boulder for the

year 2000. He is currently working at the Department of Information and

Computer Engineering in Ajou University since 1994. His interests include

application models and frameworks for large scale systems, ubiquitous

computing, service-oriented computing, network security, etc.

Myungchul Yoon received the BS and MS degrees in electronics engineering

from Seoul National University, Korea, in 1986 and 1988 respectively, and the

Ph.D. degree in Electrical and Computer Engineering from The University of

Texas at Austin in 1998. From 1988 to 2002, he was with Hynix Inc. Icheon,

Korea as a technical research staff at Semiconductor R&D Lab. and Mobile

Communication R&D Lab. From 2005 to 2006, he was with Daegu-Gyeongbuk

Institute of Science and Technology (DGIST), Korea as a technical staff at the

Information Technology R&D Division. Since 2006, he has been with the

Department of Electronics Engineering, Dankook University, Cheonan, Korea,

where he is a professor. His research interests are in mobile communication,

wireless personal area networks (WPAN), embedded systems, and low-power

VLSI design.

