DOI QR코드

DOI QR Code

A study on the properties of artificial aggregates containing bottom ash from the power plant and waste catalyst slag

화력발전소 바닥재와 폐촉매 슬래그로 제조된 인공골재의 특성 연구

  • Jo, Si-Nae (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kang, Seung-Gu (Department of Advanced Materials Engineering, Kyonggi University)
  • Received : 2012.07.31
  • Accepted : 2012.08.14
  • Published : 2012.08.31

Abstract

The artificial aggregate composing of coal bottom ash and waste catalyst slag (7 : 3, wt%) were fabricated using direct sintering method and, the bloating properties of aggregates were investigated as a function of raw material particle size and sintering temperature. Most of the artificial aggregates sintered at over $1150^{\circ}C$ showed the bloating phenomenon regardless of particle size of the raw materials. Consequently, the specific gravity of the aggregates was drastically decreased to below 1.4. The aggregates containing waste catalyst slag of $90{\mu}m$ under among the W-series specimens, however, did not show the noticeable bloating phenomenon. For the aggregates sintered at lower temperature as $1050{\sim}1150^{\circ}C$, the specific gravity increased with particle size of raw materials. Also, the water absorption of all aggregates decreased with the sintering temperature. The aggregates fabricated in this study met the lightweight aggregate standard showing the specific gravity 1.7~1.4 and water absorption 8~19 % and, therefore, can be applicable for the various fields.

무기계 폐자원인 화력발전소 바닥재(이하 바닥재로 칭함)와 폐촉매 슬래그를 7 : 3(무게비)으로 혼합, 성형하고 직화소성법으로 인공골재를 제조한 뒤, 원료들의 입도 및 소성온도가 골재의 발포특성에 미치는 영향을 고찰하였다. 대부분의 인공골재는 원료 입도에 관계없이 $1150^{\circ}C$ 이상의 소성온도에서 발포거동을 나타내었으며, 그 결과 비중이 급격히 낮아져 $1250^{\circ}C$에서 약 1.4로 수렴하였다. 그러나 폐촉매 슬래그의 입도를 변화시킨 골재 중 가장 작은 입도($90{\mu}m$)를 사용한 시편만은 두드러진 발포특성을 보이지 않았다. $1050{\sim}1150^{\circ}C$의 저온구간에서 소성된 인공골재의 경우, 원료로 사용된 바닥재와 폐촉매 슬래그 입도가 클수록 비중이 증가하였다. 또한 모든 골재들은 소성온도와 함께 흡수율이 낮아지는 경향을 보였다. 이 실험에서 제조된 인공골재의 비중은 1.4~1.7, 그리고 흡수율은 8~19 %를 나타내어 경량골재의 기준을 만족함으로써 다양한 분야에 적용이 가능할 것으로 판단된다.

Keywords

References

  1. D.Y. Shin, Jeon-Ju University Graduate School a master's thesis (2010).
  2. J.C. Lee, Recycling white paper, Resource Recycling R&D Center, Gyeonggi-do (2004).
  3. S.U. Shin, S. Kumar, T.U. Jung and B.W. Shin, "The strength and characteristic of PCC bottom ash", J. Kor. Geo-Environ. Soc. 8[2] (2007) 57.
  4. K.D. Kim, J.H. Kim, Y.T. Kim, S.G. Kang and K.G. Lee, "Production of lightweight aggregates using power plant reclaimed ash", J. Kor. Ceram. Soc. 47[6] (2010) 583. https://doi.org/10.4191/KCERS.2010.47.6.583
  5. J.Y. Park, Y.T. Kim, K.G. Lee, S.G. Kang and J.H. Kim, "The mechanism of black core formation," J. Kor. Cryst. Growth and Cryst. Tech. 15[5] (2005) 208.
  6. J.C. Hostetter and H.S. Roberts, "Notes on the Dissociation of ferric oxide dissolved in glass and its relation to the color of iron-bearing glasses," J. Am. Ceram. Soc. 4[11] (1921) 927. https://doi.org/10.1111/j.1151-2916.1921.tb17326.x
  7. C.M. Riley, "Relation of chemical Properties to the bloating of clays", J. Am. Ceram. Soc. 34[4] (1951) 121. https://doi.org/10.1111/j.1151-2916.1951.tb11619.x
  8. V.Z. Abdrakhimov and E.C. Abdrakhimova, "Formation of the black core in high-speed firing of floor tiles," Glass and Ceramics 56[8] (1999) 30. https://doi.org/10.1007/BF02681400
  9. M.A. Kang and S.G. Kang, "Characterization of artificial aggregates fabricated from coal bottom ash containing much undurned carbon", J. Kor. Cryst. Growth and Cryst. Tech. 21[1] (2011) 47. https://doi.org/10.6111/JKCGCT.2011.21.1.047
  10. 10] K.D. Kim and S.G. Kang, "Properties of artificial aggregates fabricated with various heating conditions", J. Kor. Cryst. Growth and Cryst. Tech. 20[6] (2010) 301. https://doi.org/10.6111/JKCGCT.2010.20.6.301

Cited by

  1. Behavior of radial cracks generated inside artificial lightweight aggregate manufactured from reject ash and dredged soil vol.16, pp.7, 2015, https://doi.org/10.1007/s12541-015-0174-2
  2. Study on the prevention methods of radial cracks generated in artificial lightweight aggregate vol.25, pp.5, 2015, https://doi.org/10.6111/JKCGCT.2015.25.5.199