References
- E.A. Holm and S.M. Foiles, "How grain growth stops: A mechanism for grain-growth stagnation in pure materials", Science 328 (2010) 1138. https://doi.org/10.1126/science.1187833
- P.R. Rois and M.E. Glicksman, "Polyhedral model for self-similar grain growth", Acta Mater. 56 (2008) 1165. https://doi.org/10.1016/j.actamat.2007.11.010
- J. Svoboda and F.D. Fischer, "A new approach to modelling of non-steady grain growth", Acta Mater. 55 (2007) 4467. https://doi.org/10.1016/j.actamat.2007.04.012
- T. Wejrzanowski, K. Batorski and K.J. Kurzydlowski, "Grain growth modelling: 3D and 2D correlation", Materials Characterization 56 (2006) 336. https://doi.org/10.1016/j.matchar.2005.09.010
- C.S. Pande and A.K. Rajagopal, "Modeling of grain growth in two dimensions", Acta Mater. 50 (2002) 3013. https://doi.org/10.1016/S1359-6454(02)00130-1
- A. Kazaryan, B.R. Patton, S.A. Dregia and Y. Wang, "On the theory of grain growth in systems with anisotropic boundary mobility", Acta Mater. 50 (2002) 499. https://doi.org/10.1016/S1359-6454(01)00369-X
- P.R. Rios, "Irreversible thermodynamics, parabolic law and self-similar state in grain growth", Acta Mater. 52 (2004) 249. https://doi.org/10.1016/j.actamat.2003.09.010
-
S. Yoon, J. Kim, B. Shin, S. Park, D. Shin and H. Lee, "Effects of anatase-rutile phase transition and grain growth with
$WO_{3}$ on thermal stability for TiO2 SCR catalyst", J. of Kor. Cryst. Growth & Cryst. Tech. 21 (2011) 181. https://doi.org/10.6111/JKCGCT.2011.21.4.181 -
S. Kim, E. Kang, U. Kim, K. Hwang and W. Cho, "Sintered body characteristics of LAS by addition of
$CaCO_{3}$ and$ZrO_{2}$ using a solid-state reaction", J. of Kor. Cryst. Growth & Cryst. Tech. 21 (2011) 218. https://doi.org/10.6111/JKCGCT.2011.21.5.218 - N. Moelans, F. Wendler and B. Nestler, "Comparative study of two phase-field models for grain growth", Computational Materials Science 46 (2009) 479. https://doi.org/10.1016/j.commatsci.2009.03.037
- N. Moelans, B. Blanpain and P. Wollants, "An introduction to phase-field modeling of microstructure evolution", Computer Coupling of Phase Diagrams and Thermochemistry 32 (2008) 268. https://doi.org/10.1016/j.calphad.2007.11.003
- V.Y. Novikov, "Microstructure stabilization in bulk nanocrystalline materials: Analytical approach and numerical modeling", Mater. Lett. 62 (2008) 3748. https://doi.org/10.1016/j.matlet.2008.04.048
- S. Kim, D. Kim, W. Kim and Y. Park, "Computer simulations of 2D and 3D ideal grain growth", Phys. Rev. E 74 (2006) 061605. https://doi.org/10.1103/PhysRevE.74.061605
- C.E. Krill and L.Q. Chen, "Computer simulation of 3-D grain growth using a phase-field model", Acta Mater. 50 (2002) 3057.
- Q. Yu and S.K. Esche, "Three-dimensional grain growth modeling with a monte carlo algrithm", Mater. Lett. 57 (2003) 4622. https://doi.org/10.1016/S0167-577X(03)00372-0
- M.P. Anderson, D.J. Srolovitz, G.S. Grest and P.S. Sahni, "Computer simulation of grain growth-I. kinetics", Acta Mater. 32 (1984) 783. https://doi.org/10.1016/0001-6160(84)90151-2
- D.J. Srolovitz, M.P. Anderson, P.S. Sahni and G.S. Grest, "Computer simulation of grain growth-II. Grain size distribution, topology, and local dynamics", Acta Mater. 32 (1984) 793. https://doi.org/10.1016/0001-6160(84)90152-4
- F.J. Humphreys and M. Hatherly, "Recrystallization and related annealing phenomena", 2nd Ed., Elsevier, p. 338 (2004).