DOI QR코드

DOI QR Code

Inhibition of glutamate dehydrogenase and insulin secretion by KHG26377 does not involve ADP-ribosylation by SIRT4 or deacetylation by SIRT3

  • Kim, Eun-A (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Yang, Seung-Ju (Department of Biomedical Laboratory Science, Konyang University) ;
  • Choi, Soo-Young (Department of Biomedical Science, Research Institute for Bioscience and Biotechnology, and Medical & Bio-material Research Center, Hallym University) ;
  • Lee, Woo-Je (Department of Internal Medicine, University of Ulsan College of Medicine) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
  • Received : 2012.02.23
  • Accepted : 2012.03.12
  • Published : 2012.08.31

Abstract

We investigated the mechanisms involved in KHG26377 regulation of glutamate dehydrogenase (GDH) activity, focusing on the roles of SIRT4 and SIRT3. Intraperitoneal injection of mice with KHG26377 reduced GDH activity with concomitant repression of glucose-induced insulin secretion. Consistent with their known functions, SIRT4 ribosylated GDH and reduced its activity, and SIRT3 deacetylated GDH, increasing its activity. However, KHG26377 did not affect SIRT4-mediated ADP-ribosylation/inhibition or SIRT3-mediated deacetylation/activation of GDH. KHG26377 had no effect on SIRT4 protein levels, and did not alter total GDH, acetylated GDH, or SIRT3 protein levels in pancreatic mitochondrial lysates. These results suggest that the mechanism by which KHG26377 inhibits GDH activity and insulin secretion does not involve ADP-ribosylation of GDH by SIRT4 or deacetylation of GDH by SIRT3.

Keywords

References

  1. Katagiri, M. and Nakamura, M. (2003) Reappraisal of the 20th-century version of amino acid metabolism. Biochem. Biophys. Res. Commun. 312, 205-208. https://doi.org/10.1016/j.bbrc.2003.09.219
  2. Sener, A. and Malaisse, W. J. (1980) L-Leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288, 187-189. https://doi.org/10.1038/288187a0
  3. Hoy, M. H., Maechler, P., Efanov, A. M., Wollheim, C. B., Berggren, P. O. and Gromada, J. (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic ${\beta}$-cells. FEBS Lett. 531, 199-203. https://doi.org/10.1016/S0014-5793(02)03500-7
  4. Anno, T., Uehara, S., Katagiri, H., Ohta, Y., Ueda, K., Mizuguchi, H., Moriyama, Y., Oka, Y. and Tanizawa, Y. (2004) Overexpression of constitutively activated glutamate dehydrogenase induces insulin secretion through enhanced glutamate oxidation. Am. J. Physiol. Endocrinol. Metab. 286, E280-E285. https://doi.org/10.1152/ajpendo.00380.2003
  5. Carobbio, S., Ishihara, H., Fernandez-Pascual, S., Bartley, C., Martin-Del-Rio, R. and Maechler, P. (2004) Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 47, 266-276. https://doi.org/10.1007/s00125-003-1306-2
  6. Carobbio, S., Frigerio, F., Rubi, B., Vetterli, L., Bloksgaard, M., Gjinovci, A., Pournourmohammadi, S., Herrera, P. L., Reith, W., Mandrup, S. and Maechler, P. (2009) Deletion of glutamate dehydrogenase in ${\beta}$-Cells abolishes part of the insulin secretory response not required for glucose homeostasis. J. Biol. Chem. 284, 921-929. https://doi.org/10.1074/jbc.M806295200
  7. Bryla, J., Michalik, M., Nelson, J. and Erecinska, M. (1994) Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism 43, 1187-1195. https://doi.org/10.1016/0026-0495(94)90064-7
  8. Stanley, C. A., Lieu, Y. K., Hsu, B. Y., Burlina, A. B., Greenberg, C. R., Hopwood, N. J., Perlman, K., Rich, B. H., Zammarchi, E. and Poncz, M. (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med. 338, 1352-1357. https://doi.org/10.1056/NEJM199805073381904
  9. Yorifuji, T., Muroi, J., Uematsu, A., Hiramatsu, H. and Momoi, T. (1999) Hyperinsulinism-hyperammonemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum. Genet. 104, 476-479. https://doi.org/10.1007/s004390050990
  10. MacMullen, C., Fang, J., Hsu, B. Y., Kelly, A., de Lonlay- Debeney, P., Saudubray, J. M., Ganguly, A., Smith, T. J. and Stanley, C. A. (2001) Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab. 86, 1782- 1787. https://doi.org/10.1210/jc.86.4.1782
  11. Smith, T. J., Peterson, P. E., Schmidt, T., Fang, J. and Stanley, C. A. (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J. Mol. Biol. 307, 707-720. https://doi.org/10.1006/jmbi.2001.4499
  12. Li, C., Allen, A., Kwagh, J., Doliba, N. M., Qin, W., Najafi, H., Collins, H. W., Matschinsky, F. M., Stanley, C. A. and Smith, T. J. (2006) Green tea polyphenols modulated insulin secretion by inhibition glutamate dehydrogenase. J. Biol. Chem. 281, 10214-10221. https://doi.org/10.1074/jbc.M512792200
  13. Herrero-Yraola, A., Bakhit, S. M. A., Franke, P., Weise, C., Schweiger, M., Jorcke, D. and Ziegler, M. (2001) Regulation of glutamate dehydrogenase by reversible ADP-ribosylation in mitochondria. EMBO J. 20, 2404-2412. https://doi.org/10.1093/emboj/20.10.2404
  14. Zolkiewska, A., Nightingale, M. S. and Moss, J. (1992) Molecular characterization of NAD: arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 89, 11352-11356. https://doi.org/10.1073/pnas.89.23.11352
  15. Jorcke, D., Ziegler, M., Herrero-Yraola, A. and Schweiger, K. (1998) Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria. Biochem. J. 332, 189-193. https://doi.org/10.1042/bj3320189
  16. Masmoudi, A. and Mandel, P. (1987) ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry 26, 1965-1969. https://doi.org/10.1021/bi00381a027
  17. Frei, B. and Richter, C. (1988) Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry 27, 529-535. https://doi.org/10.1021/bi00402a004
  18. Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W. and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic ${\beta}$ cells. Cell 126, 941-954. https://doi.org/10.1016/j.cell.2006.06.057
  19. Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castronovo, V., Maechler, P. and Verdin, E. (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583-33592. https://doi.org/10.1074/jbc.M705488200
  20. Lombard, D. B., Alt, F. W., Cheng, H., Bunkenborg, J., Streeper, R. S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., Yang, Y., Chen, Y., Hirschey, M., Bronson, R., Haigis, M., Guarente, L., Farese, R., Weissman, S., Verdin, E. and Schwer, B. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807- 8814. https://doi.org/10.1128/MCB.01636-07
  21. Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker C. and Steegborn, C. (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382, 790-801. https://doi.org/10.1016/j.jmb.2008.07.048
  22. Yang, S. J., Hahn, H. G., Choi, S. Y. and Cho, S.-W. (2010) Inhibitory effects of KHG26377 on glutamate dehydrogenase activity in cultured islets. BMB Rep. 43, 245-249. https://doi.org/10.5483/BMBRep.2010.43.4.245
  23. Cho, S.-W., Lee, J. and Choi, S. (1995) Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain. Eur. J. Biochem. 233, 340-346. https://doi.org/10.1111/j.1432-1033.1995.340_1.x
  24. Choi, S. Y., Hong, J. W., Song, M.-S., Jeon, S. G., Bahn, J. H., Lee, B. Y., Ahn, J.-Y. and Cho, S.-W. (1999) Different antigenic reactivities of bovine brain glutamate dehydrogenase isoproteins. J. Neurochem. 72, 2162-2169.
  25. Choi, M. M., Huh, J. W., Yang, S. J., Cho, E. H., Choi, S. Y. and Cho, S.-W. (2005) Identification of ADP-ribosylation site in human glutamate dehydrogenase isozymes. FEBS Lett. 579, 4125-4130. https://doi.org/10.1016/j.febslet.2005.06.041
  26. Yang, S. J., Huh, J. W., Kim, M. J., Lee, W. J., Kim, T. U., Choi, S. Y. and Cho, S.-W. (2003) Regulatory effects of 5'-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie 85, 581-586. https://doi.org/10.1016/S0300-9084(03)00092-0
  27. Argmann, C. and Auwerx, J. (2006) Insulin secretion: SIRT4 gets in on the act. Cell 126, 837-839. https://doi.org/10.1016/j.cell.2006.08.031
  28. Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J. and Zhao, Y. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607-618. https://doi.org/10.1016/j.molcel.2006.06.026
  29. Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. and Feinberg, A. P. (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. U.S.A. 99, 13653-13658. https://doi.org/10.1073/pnas.222538099

Cited by

  1. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells vol.76, 2014, https://doi.org/10.1016/j.freeradbiomed.2014.08.001
  2. Design, synthesis and structure–activity relationship studies of novel sirtuin 2 (SIRT2) inhibitors with a benzamide skeleton vol.23, pp.2, 2015, https://doi.org/10.1016/j.bmc.2014.11.027
  3. Expression analysis, single nucleotide polymorphisms within SIRT4 and SIRT7 genes and their association with body size and meat quality traits in Qinchuan cattle vol.15, pp.12, 2016, https://doi.org/10.1016/S2095-3119(16)61419-3
  4. The Roles of Mitochondrial SIRT4 in Cellular Metabolism vol.9, pp.1664-2392, 2019, https://doi.org/10.3389/fendo.2018.00783