References
- Katagiri, M. and Nakamura, M. (2003) Reappraisal of the 20th-century version of amino acid metabolism. Biochem. Biophys. Res. Commun. 312, 205-208. https://doi.org/10.1016/j.bbrc.2003.09.219
- Sener, A. and Malaisse, W. J. (1980) L-Leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288, 187-189. https://doi.org/10.1038/288187a0
-
Hoy, M. H., Maechler, P., Efanov, A. M., Wollheim, C. B., Berggren, P. O. and Gromada, J. (2002) Increase in cellular glutamate levels stimulates exocytosis in pancreatic
${\beta}$ -cells. FEBS Lett. 531, 199-203. https://doi.org/10.1016/S0014-5793(02)03500-7 - Anno, T., Uehara, S., Katagiri, H., Ohta, Y., Ueda, K., Mizuguchi, H., Moriyama, Y., Oka, Y. and Tanizawa, Y. (2004) Overexpression of constitutively activated glutamate dehydrogenase induces insulin secretion through enhanced glutamate oxidation. Am. J. Physiol. Endocrinol. Metab. 286, E280-E285. https://doi.org/10.1152/ajpendo.00380.2003
- Carobbio, S., Ishihara, H., Fernandez-Pascual, S., Bartley, C., Martin-Del-Rio, R. and Maechler, P. (2004) Insulin secretion profiles are modified by overexpression of glutamate dehydrogenase in pancreatic islets. Diabetologia 47, 266-276. https://doi.org/10.1007/s00125-003-1306-2
-
Carobbio, S., Frigerio, F., Rubi, B., Vetterli, L., Bloksgaard, M., Gjinovci, A., Pournourmohammadi, S., Herrera, P. L., Reith, W., Mandrup, S. and Maechler, P. (2009) Deletion of glutamate dehydrogenase in
${\beta}$ -Cells abolishes part of the insulin secretory response not required for glucose homeostasis. J. Biol. Chem. 284, 921-929. https://doi.org/10.1074/jbc.M806295200 - Bryla, J., Michalik, M., Nelson, J. and Erecinska, M. (1994) Regulation of the glutamate dehydrogenase activity in rat islets of Langerhans and its consequence on insulin release. Metabolism 43, 1187-1195. https://doi.org/10.1016/0026-0495(94)90064-7
- Stanley, C. A., Lieu, Y. K., Hsu, B. Y., Burlina, A. B., Greenberg, C. R., Hopwood, N. J., Perlman, K., Rich, B. H., Zammarchi, E. and Poncz, M. (1998) Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N. Engl. J. Med. 338, 1352-1357. https://doi.org/10.1056/NEJM199805073381904
- Yorifuji, T., Muroi, J., Uematsu, A., Hiramatsu, H. and Momoi, T. (1999) Hyperinsulinism-hyperammonemia syndrome caused by mutant glutamate dehydrogenase accompanied by novel enzyme kinetics. Hum. Genet. 104, 476-479. https://doi.org/10.1007/s004390050990
- MacMullen, C., Fang, J., Hsu, B. Y., Kelly, A., de Lonlay- Debeney, P., Saudubray, J. M., Ganguly, A., Smith, T. J. and Stanley, C. A. (2001) Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase. J. Clin. Endocrinol. Metab. 86, 1782- 1787. https://doi.org/10.1210/jc.86.4.1782
- Smith, T. J., Peterson, P. E., Schmidt, T., Fang, J. and Stanley, C. A. (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J. Mol. Biol. 307, 707-720. https://doi.org/10.1006/jmbi.2001.4499
- Li, C., Allen, A., Kwagh, J., Doliba, N. M., Qin, W., Najafi, H., Collins, H. W., Matschinsky, F. M., Stanley, C. A. and Smith, T. J. (2006) Green tea polyphenols modulated insulin secretion by inhibition glutamate dehydrogenase. J. Biol. Chem. 281, 10214-10221. https://doi.org/10.1074/jbc.M512792200
- Herrero-Yraola, A., Bakhit, S. M. A., Franke, P., Weise, C., Schweiger, M., Jorcke, D. and Ziegler, M. (2001) Regulation of glutamate dehydrogenase by reversible ADP-ribosylation in mitochondria. EMBO J. 20, 2404-2412. https://doi.org/10.1093/emboj/20.10.2404
- Zolkiewska, A., Nightingale, M. S. and Moss, J. (1992) Molecular characterization of NAD: arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 89, 11352-11356. https://doi.org/10.1073/pnas.89.23.11352
- Jorcke, D., Ziegler, M., Herrero-Yraola, A. and Schweiger, K. (1998) Enzymic, cysteine-specific ADP-ribosylation in bovine liver mitochondria. Biochem. J. 332, 189-193. https://doi.org/10.1042/bj3320189
- Masmoudi, A. and Mandel, P. (1987) ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. Biochemistry 26, 1965-1969. https://doi.org/10.1021/bi00381a027
- Frei, B. and Richter, C. (1988) Mono(ADP-ribosylation) in rat liver mitochondria. Biochemistry 27, 529-535. https://doi.org/10.1021/bi00402a004
-
Haigis, M. C., Mostoslavsky, R., Haigis, K. M., Fahie, K., Christodoulou, D. C., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., Karow, M., Blander, G., Wolberger, C., Prolla, T. A., Weindruch, R., Alt, F. W. and Guarente, L. (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic
${\beta}$ cells. Cell 126, 941-954. https://doi.org/10.1016/j.cell.2006.06.057 - Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castronovo, V., Maechler, P. and Verdin, E. (2007) Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583-33592. https://doi.org/10.1074/jbc.M705488200
- Lombard, D. B., Alt, F. W., Cheng, H., Bunkenborg, J., Streeper, R. S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., Yang, Y., Chen, Y., Hirschey, M., Bronson, R., Haigis, M., Guarente, L., Farese, R., Weissman, S., Verdin, E. and Schwer, B. (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27, 8807- 8814. https://doi.org/10.1128/MCB.01636-07
- Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker C. and Steegborn, C. (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382, 790-801. https://doi.org/10.1016/j.jmb.2008.07.048
- Yang, S. J., Hahn, H. G., Choi, S. Y. and Cho, S.-W. (2010) Inhibitory effects of KHG26377 on glutamate dehydrogenase activity in cultured islets. BMB Rep. 43, 245-249. https://doi.org/10.5483/BMBRep.2010.43.4.245
- Cho, S.-W., Lee, J. and Choi, S. (1995) Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain. Eur. J. Biochem. 233, 340-346. https://doi.org/10.1111/j.1432-1033.1995.340_1.x
- Choi, S. Y., Hong, J. W., Song, M.-S., Jeon, S. G., Bahn, J. H., Lee, B. Y., Ahn, J.-Y. and Cho, S.-W. (1999) Different antigenic reactivities of bovine brain glutamate dehydrogenase isoproteins. J. Neurochem. 72, 2162-2169.
- Choi, M. M., Huh, J. W., Yang, S. J., Cho, E. H., Choi, S. Y. and Cho, S.-W. (2005) Identification of ADP-ribosylation site in human glutamate dehydrogenase isozymes. FEBS Lett. 579, 4125-4130. https://doi.org/10.1016/j.febslet.2005.06.041
- Yang, S. J., Huh, J. W., Kim, M. J., Lee, W. J., Kim, T. U., Choi, S. Y. and Cho, S.-W. (2003) Regulatory effects of 5'-deoxypyridoxal on glutamate dehydrogenase activity and insulin secretion in pancreatic islets. Biochimie 85, 581-586. https://doi.org/10.1016/S0300-9084(03)00092-0
- Argmann, C. and Auwerx, J. (2006) Insulin secretion: SIRT4 gets in on the act. Cell 126, 837-839. https://doi.org/10.1016/j.cell.2006.08.031
- Kim, S. C., Sprung, R., Chen, Y., Xu, Y., Ball, H., Pei, J., Cheng, T., Kho, Y., Xiao, H., Xiao, L., Grishin, N. V., White, M., Yang, X. J. and Zhao, Y. (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 23, 607-618. https://doi.org/10.1016/j.molcel.2006.06.026
- Onyango, P., Celic, I., McCaffery, J. M., Boeke, J. D. and Feinberg, A. P. (2002) SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. U.S.A. 99, 13653-13658. https://doi.org/10.1073/pnas.222538099
Cited by
- SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells vol.76, 2014, https://doi.org/10.1016/j.freeradbiomed.2014.08.001
- Design, synthesis and structure–activity relationship studies of novel sirtuin 2 (SIRT2) inhibitors with a benzamide skeleton vol.23, pp.2, 2015, https://doi.org/10.1016/j.bmc.2014.11.027
- Expression analysis, single nucleotide polymorphisms within SIRT4 and SIRT7 genes and their association with body size and meat quality traits in Qinchuan cattle vol.15, pp.12, 2016, https://doi.org/10.1016/S2095-3119(16)61419-3
- The Roles of Mitochondrial SIRT4 in Cellular Metabolism vol.9, pp.1664-2392, 2019, https://doi.org/10.3389/fendo.2018.00783