References
- Viverge, D., Grimmonprez, L., Cassanas, G., Bardet, L. and Solere, M. (1990) Variations in oligosaccharides and lactose in human milk during the first week of lactation. J. Pediatr. Gastroenterol. Nutr. 11, 361-364. https://doi.org/10.1097/00005176-199010000-00013
- Coppa, G. V., Gabrielli, O., Pierani, P., Catassi, C., Carlucci, A. and Giorgi, P. L. (1993) Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91, 637-641.
- Kunz, C., Rudloff, S., Baier, W., Klein, N. and Strobel, S. (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20, 699-722. https://doi.org/10.1146/annurev.nutr.20.1.699
- Wu, S., Grimm, R., German, J. B. and Lebrilla, C. B. (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome Res. 10, 856-868. https://doi.org/10.1021/pr101006u
- Wu, S., Tao, N., German, J. B., Grimm, R. and Lebrilla, C. B. (2010) Development of an annotated library of neutral human milk oligosaccharides. J. Proteome Res. 9, 4138-4151. https://doi.org/10.1021/pr100362f
- Kobata, A. (2010) Structures and application of oligosaccharides in human milk. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 86, 731-747. https://doi.org/10.2183/pjab.86.731
- Marino, K., Lane, J. A., Abrahams, J. L., Struwe, W. B., Harvey, D. J., Marotta, M., Hickey, R. M. and Rudd, P. M. (2011) Method for milk oligosaccharide profiling by 2-aminobenzamide labeling and hydrophilic interaction chromatography. Glycobiology 21, 1317-1330. https://doi.org/10.1093/glycob/cwr067
- Thurl, S., Henker, J., Siegel, M., Tovar, K. and Sawatzki, G. (1997) Detection of four human milk groups with respect to Lewis blood group dependent oligosaccharides. Glycoconj. J. 14, 795-799. https://doi.org/10.1023/A:1018529703106
- Blank, D., Gebhardt, S., Maass, K., Lochnit, G., Dotz, V., Blank, J., Geyer, R. and Kunz, C. (2011) High-throughput mass finger printing and Lewis blood group assignment of human milk oligosaccharides. Anal. Bioanal. Chem. 401, 2495-2510. https://doi.org/10.1007/s00216-011-5349-9
- Newburg, D. S., Ruiz-Palacios, G. M., Altaye, M., Chaturvedi, P., Meinzen-Derr, J., Guerrero Mde, L. and Morrow, A. L. (2004) Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 14, 253-263. https://doi.org/10.1093/glycob/cwh020
- Kobata, A. (1992) Structures and functions of the sugar chains of glycoproteins. Eur. J. Biochem. 209, 483-501. https://doi.org/10.1111/j.1432-1033.1992.tb17313.x
- Oriol, R., Le Pendu, J. and Mollicone, R. (1986) Genetics of ABO, H, Lewis, X and related antigens. Vox Sanguinis 51, 161-171. https://doi.org/10.1111/j.1423-0410.1986.tb01946.x
- Urashima, T., Saito, T., Nakamura, T. and Messer, M. (2001) Oligosaccharides of milk and colostrum in non-human mammals. Glycoconj. J. 18, 357-371. https://doi.org/10.1023/A:1014881913541
- Tao, N., Wu, S., Kim, J., An, H. J., Hinde, K., Power, M. L., Gagneux, P., German, J. B. and Lebrilla, C. B. (2011) Evolutionary glycomics: characterization of milk oligosaccharides in primates. J. Proteome Res. 10, 1548-1557. https://doi.org/10.1021/pr1009367
- Zivkovic, A. M., German, J. B., Lebrilla, C. B. and Mills, D. A. (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl 1), 4653-4658. https://doi.org/10.1073/pnas.1000083107
- German, J. B., Freeman, S. L., Lebrilla, C. B. and Mills, D. A. (2008) Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr. Workshop Ser. Pediatr. Program 62, 205-218. https://doi.org/10.1159/000146322
- Newburg, D. S., Ruiz-Palacios, G. M. and Morrow, A. L. (2005) Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 25, 37-58. https://doi.org/10.1146/annurev.nutr.25.050304.092553
- Morrow, A. L., Meinzen-Derr, J., Huang, P., Schibler, K. R., Cahill, T., Keddache, M., Kallapur, S. G., Newburg, D. S., Tabangin, M., Warner, B. B. and Jiang, X. (2011) Fucosyltransferase 2 non-secretor and low secretor status predicts severe outcomes in premature infants. J. Pediatr. 158, 745-751. https://doi.org/10.1016/j.jpeds.2010.10.043
- Morrow, A. L., Ruiz-Palacios, G. M., Altaye, M., Jiang, X., Guerrero, M. L., Meinzen-Derr, J. K., Farkas, T., Chaturvedi, P., Pickering, L. K. and Newburg, D. S. (2004) Human milk oligosaccharide blood group epitopes and innate immune protection against campylobacter and calicivirus diarrhea in breastfed infants. Adv. Exp. Med. Biol. 554, 443-446. https://doi.org/10.1007/978-1-4757-4242-8_61
- Wang, B. (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29, 177-222. https://doi.org/10.1146/annurev.nutr.28.061807.155515
- Hong, P., Ninonuevo, M. R., Lee, B., Lebrilla, C. and Bode, L. (2009) Human milk oligosaccharides reduce HIV- 1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br. J. Nutr. 101, 482-486.
- Coppa, G. V., Zampini, L., Galeazzi, T., Facinelli, B., Ferrante, L., Capretti, R. and Orazio, G. (2006) Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res. 59, 377-382. https://doi.org/10.1203/01.pdr.0000200805.45593.17
- Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez- Munguia, B. and Newburg, D. S. (2003) Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112-14120. https://doi.org/10.1074/jbc.M207744200
- Morrow, A. L., Ruiz-Palacios, G. M., Altaye, M., Jiang, X., Guerrero, M. L., Meinzen-Derr, J. K., Farkas, T., Chaturvedi, P., Pickering, L. K. and Newburg, D. S. (2004) Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J. Pediatr. 145, 297-303. https://doi.org/10.1016/j.jpeds.2004.04.054
- Marcobal, A. and Sonnenburg, J. L. (2012) Human milk oligosaccharide consumption by intestinal microbiota. Clin. Microbiol. Infect. 18(Suppl 4), 12-15. https://doi.org/10.1111/j.1469-0691.2012.03863.x
- Marcobal, A., Barboza, M., Sonnenburg, E. D., Pudlo, N., Martens, E. C., Desai, P., Lebrilla, C. B., Weimer, B. C., Mills, D. A., German, J. B. and Sonnenburg, J. L. (2011) Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host. Microbe. 10, 507-514. https://doi.org/10.1016/j.chom.2011.10.007
- Sela, D. A., Li, Y., Lerno, L., Wu, S., Marcobal, A. M., German, J. B., Chen, X., Lebrilla, C. B. and Mills, D. A. (2011) An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J. Biol. Chem. 286, 11909-11918. https://doi.org/10.1074/jbc.M110.193359
- LoCascio, R. G., Ninonuevo, M. R., Freeman, S. L., Sela, D. A., Grimm, R., Lebrilla, C. B., Mills, D. A. and German, J. B. (2007) Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J. Agric. Food Chem. 55, 8914-8919. https://doi.org/10.1021/jf0710480
- Marcobal, A., Barboza, M., Froehlich, J. W., Block, D. E., German, J. B., Lebrilla, C. B. and Mills, D. A. (2010) Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58, 5334-5340. https://doi.org/10.1021/jf9044205
- O'hara, A. M. and Shanahan, F. (2006) The gut flora as a forgotten organ. EMBO Rep. 7, 688-693. https://doi.org/10.1038/sj.embor.7400731
- Stahl, B., Thurl, S., Zeng, J., Karas, M., Hillenkamp, F., Steup, M. and Sawatzki, G. (1994) Oligosaccharides from human milk as revealed by matrix-assisted laser desorption/ ionization mass spectrometry. Anal. Biochem. 223, 218-226. https://doi.org/10.1006/abio.1994.1577
- Locascio, R. G., Ninonuevo, M. R., Kronewitter, S. R., Freeman, S. L., German, J. B., Lebrilla, C. B. and Mills, D. A. (2009) A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2, 333-342. https://doi.org/10.1111/j.1751-7915.2008.00072.x
- Ninonuevo, M. R., Ward, R. E., LoCascio, R. G., German, J. B., Freeman, S. L., Barboza, M., Mills, D. A. and Lebrilla, C. B. (2007) Methods for the quantitation of human milk oligosaccharides in bacterial fermentation by mass spectrometry. Anal. Biochem. 361, 15-23. https://doi.org/10.1016/j.ab.2006.11.010
- Zauner, G., Deelder, A. M. and Wuhrer, M. (2011) Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis 32, 3456-3466. https://doi.org/10.1002/elps.201100247
- Wuhrer, M., de Boer, A. R. and Deelder, A. M. (2009) Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass Spectrom. Rev. 28, 192-206. https://doi.org/10.1002/mas.20195
- Ruhaak, L. R., Deelder, A. M. and Wuhrer, M. (2009) Oligosaccharide analysis by graphitized carbon liquid chromatography-mass spectrometry. Anal. Bioanal. Chem. 394, 163-174. https://doi.org/10.1007/s00216-009-2664-5
- Pabst, M. and Altmann, F. (2011) Glycan analysis by modern instrumental methods. Proteomics 11, 631-643. https://doi.org/10.1002/pmic.201000517
- Ruhaak, L. R., Zauner, G., Huhn, C., Bruggink, C., Deelder, A. M. and Wuhrer, M. (2010) Glycan labeling strategies and their use in identification and quantification. Anal. Bioanal. Chem. 397, 3457-3481. https://doi.org/10.1007/s00216-010-3532-z
- Costello, C. E., Contado-Miller, J. M. and Cipollo, J. F. (2007) A glycomics platform for the analysis of permethylated oligosaccharide alditols. J. Am. Soc. Mass Spectrom. 18, 1799-1812. https://doi.org/10.1016/j.jasms.2007.07.016
- Asakuma, S., Urashima, T., Akahori, M., Obayashi, H., Nakamura, T., Kimura, K., Watanabe, Y., Arai, I. and Sanai, Y. (2008) Variation of major neutral oligosaccharides levels in human colostrum. Eur. J. Clin. Nutr. 62, 488-494. https://doi.org/10.1038/sj.ejcn.1602738
- Sumiyoshi, W., Urashima, T., Nakamura, T., Arai, I., Saito, T., Tsumura, N., Wang, B., Brand-Miller, J., Watanabe, Y. and Kimura, K. (2003) Determination of each neutral oligosaccharide in the milk of Japanese women during the course of lactation. Br. J. Nutr. 89, 61-69. https://doi.org/10.1079/BJN2002746
- Leo, F., Asakuma, S., Fukuda, K., Senda, A. and Urashima, T. (2010) Determination of sialyl and neutral oligosaccharide levels in transition and mature milks of Samoan women, using anthranilic derivatization followed by reverse phase high performance liquid chromatography. Biosci. Biotechnol. Biochem. 74, 298-303. https://doi.org/10.1271/bbb.90614
- Leo, F., Asakuma, S., Nakamura, T., Fukuda, K., Senda, A. and Urashima, T. (2009) Improved determination of milk oligosaccharides using a single derivatization with anthranilic acid and separation by reversed-phase high-performance liquid chromatography. J. Chrom. A 1216, 1520-1523. https://doi.org/10.1016/j.chroma.2009.01.015
- Royle, L., Campbell, M. P., Radcliffe, C. M., White, D. M., Harvey, D. J., Abrahams, J. L., Kim, Y. G., Henry, G. W., Shadick, N. A., Weinblatt, M. E., Lee, D. M., Rudd, P. M. and Dwek, R. A. (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1-12. https://doi.org/10.1016/j.ab.2007.12.012
- Royle, L., Mattu, T. S., Hart, E., Langridge, J. I., Merry, A. H., Murphy, N., Harvey, D. J., Dwek, R. A. and Rudd, P. M. (2002) An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 304, 70-90. https://doi.org/10.1006/abio.2002.5619
- Ruhaak, L. R., Huhn, C., Waterreus, W. J., de Boer, A. R., Neususs, C., Hokke, C. H., Deelder, A. M. and Wuhrer, M. (2008) Hydrophilic interaction chromatography-based high-throughput sample preparation method for N-glycan analysis from total human plasma glycoproteins. Anal. Chem. 80, 6119-6126. https://doi.org/10.1021/ac800630x
- Shen, Z., Warren, C. D. and Newburg, D. S. (2000) High-performance capillary electrophoresis of sialylated oligosaccharides of human milk. Anal. Biochem. 279, 37-45. https://doi.org/10.1006/abio.1999.4448
- Bao, Y., Zhu, L. and Newburg, D. S. (2007) Simultaneous quantification of sialyloligosaccharides from human milk by capillary electrophoresis. Anal. Biochem. 370, 206-214. https://doi.org/10.1016/j.ab.2007.07.004
- Albrecht, S., Schols, H. A., van den Heuvel, E. G., Voragen, A. G. and Gruppen, H. (2010) CE-LIF-MS n profiling of oligosaccharides in human milk and feces of breast-fed babies. Electrophoresis 31, 1264-1273. https://doi.org/10.1002/elps.200900646
- Albrecht, S., Schols, H. A., van den Heuvel, E. G., Voragen, A. G. and Gruppen, H. (2011) Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk. Carbohydr. Res. 346, 2540-2550. https://doi.org/10.1016/j.carres.2011.08.009
- Albrecht, S., Schols, H. A., van Zoeren, D., van Lingen, R. A., Groot Jebbink, L. J., van den Heuvel, E. G., Voragen, A. G. and Gruppen, H. (2011) Oligosaccharides in feces of breast- and formula-fed babies. Carbohydr. Res. 346, 2173-2181. https://doi.org/10.1016/j.carres.2011.06.034
- Huhn, C., Ramautar, R., Wuhrer, M. and Somsen, G. W. (2010) Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry. Anal. Bioanal. Chem. 396, 297-314. https://doi.org/10.1007/s00216-009-3193-y
- Ninonuevo, M., An, H., Yin, H., Killeen, K., Grimm, R., Ward, R., German, B. and Lebrilla, C. (2005) Nanoliquid chromatography-mass spectrometry of oligosaccharides employing graphitized carbon chromatography on microchip with a high-accuracy mass analyzer. Electrophoresis 26, 3641-3649. https://doi.org/10.1002/elps.200500246
- Anraku, T., Fukuda, K., Saito, T., Messer, M. and Urashima, T. (2012) Chemical characterization of acidic oligosaccharides in milk of the red kangaroo (Macropus rufus). Glycoconj. J. 29, 147-156. https://doi.org/10.1007/s10719-012-9372-7
- Taufik, E., Fukuda, K., Senda, A., Saito, T., Williams, C., Tilden, C., Eisert, R., Oftedal, O. and Urashima, T. (2012) Structural characterization of neutral and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel's sifaka and mongoose lemur. Glycoconj. J. 29, 119-134. https://doi.org/10.1007/s10719-012-9370-9
- Amano, J., Osanai, M., Orita, T., Sugahara, D. and Osumi, K. (2009) Structural determination by negative-ion MALDI-QIT-TOFMSn after pyrene derivatization of variously fucosylated oligosaccharides with branched decaose cores from human milk. Glycobiology 19, 601-614. https://doi.org/10.1093/glycob/cwp026
- Suzuki, Y., Suzuki, M., Ito, E., Ishii, H., Miseki, K. and Suzuki, A. (2005) Convenient and rapid analysis of linkage isomers of fucose-containing oligosaccharides by matrix- assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. Glycoconj. J. 22, 427-431. https://doi.org/10.1007/s10719-005-4173-x
- Li, B., An, H. J., Hedrick, J. L. and Lebrilla, C. B. (2009) Infrared multiphoton dissociation mass spectrometry for structural elucidation of oligosaccharides. Methods Mol. Biol. 534, 23-35. https://doi.org/10.1007/978-1-59745-022-5_2
- Li, B., Russell, S. C., Zhang, J., Hedrick, J. L. and Lebrilla, C. B. (2011) Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions of O-linked oligosaccharides from Xenopus borealis egg jelly. Glycobiology 21, 877-894. https://doi.org/10.1093/glycob/cwr003
- Zhang, J., Schubothe, K., Li, B., Russell, S. and Lebrilla, C. B. (2005) Infrared multiphoton dissociation of O-linked mucin-type oligosaccharides. Anal. Chem. 77, 208-214. https://doi.org/10.1021/ac0489824
- Pfenninger, A., Karas, M., Finke, B. and Stahl, B. (2002) Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MS(n) (part 1: methodology). J. Am. Soc. Mass Spectrom. 13, 1331-1340. https://doi.org/10.1016/S1044-0305(02)00645-1
- Pfenninger, A., Karas, M., Finke, B. and Stahl, B. (2002) Structural analysis of underivatized neutral human milk oligosaccharides in the negative ion mode by nano-electrospray MS(n) (part 2: application to isomeric mixtures). J. Am. Soc. Mass Spectrom. 13, 1341-1348. https://doi.org/10.1016/S1044-0305(02)00646-3
- Wuhrer, M., Deelder, A. M. and van der Burgt, Y. E. (2011) Mass spectrometric glycan rearrangements. Mass Spectrom. Rev. 30, 664-680. https://doi.org/10.1002/mas.20337
- Han, L. and Costello, C. E. (2011) Electron transfer dissociation of milk oligosaccharides. J. Am. Soc. Mass Spectrom. 22, 997-1013. https://doi.org/10.1007/s13361-011-0117-9
- Hua, S., An, H. J., Ozcan, S., Ro, G. S., Soares, S., DeVere-White, R. and Lebrilla, C. B. (2011) Comprehen.- sive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers. Analyst 136, 3663-3671. https://doi.org/10.1039/c1an15093f
- Hua, S., Lebrilla, C. and An, H. J. (2011) Application of nano-LC-based glycomics towards biomarker discovery. Bioanalysis 3, 2573-2585. https://doi.org/10.4155/bio.11.263
- Blank, D., Dotz, V., Geyer, R. and Kunz, C. (2012) Human milk oligosaccharides and Lewis blood group: individual high-throughput sample profiling to enhance conclusions from functional studies. Adv. Nutr. 3, 440S-449S https://doi.org/10.3945/an.111.001446
- Newburg, D. S., Ruiz-Palacios, G. M., Altaye, M., Chaturvedi, P., Guerrero, M. L., Meinzen-Derr, J. K. and Morrow, A. L. (2004) Human milk alphal,2-linked fucosylated oligosaccharides decrease risk of diarrhea due to stable toxin of E. coli in breastfed infants. Adv. Exp. Med. Biol. 554, 457-461. https://doi.org/10.1007/978-1-4757-4242-8_64
- Stepans, M. B., Wilhelm, S. L., Hertzog, M., Rodehorst, T. K., Blaney, S., Clemens, B., Polak, J. J. and Newburg, D. S. (2006) Early consumption of human milk oligosaccharides is inversely related to subsequent risk of respiratory and enteric disease in infants. Breastfeed. Med. 1, 207-215. https://doi.org/10.1089/bfm.2006.1.207
-
Kindberg, E., Hejdeman, B., Bratt, G., Wahren, B., Lindblom, B., Hinkula, J. and Svensson, L. (2006) A nonsense mutation (428G
${\rightarrow}$ A) in the fucosyltransferase FUT2 gene affects the progression of HIV-1 infection. AIDS 20, 685-689. https://doi.org/10.1097/01.aids.0000216368.23325.bc - Le Pendu, J., Ruvoen-Clouet, N., Kindberg, E. and Svensson, L. (2006) Mendelian resistance to human norovirus infections. Semin. Immunol. 18, 375-386. https://doi.org/10.1016/j.smim.2006.07.009
- Coppa, G. V., Bruni, S., Morelli, L., Soldi, S. and Gabrielli, O. (2004) The first prebiotics in humans: human milk oligosaccharides. J. Clin. Gastroenterol. 38, S80-83. https://doi.org/10.1097/01.mcg.0000128926.14285.25
- Coppa, G. V., Zampini, L., Galeazzi, T. and Gabrielli, O. (2006) Prebiotics in human milk: a review. Dig. Liver Dis. 38(Suppl 2), S291-294. https://doi.org/10.1016/S1590-8658(07)60013-9
- Barboza, M., Sela, D. A., Pirim, C., Locascio, R. G., Freeman, S. L., German, J. B., Mills, D. A. and Lebrilla, C. B. (2009) Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans. Appl. Environ. Microbiol. 75, 7319-7325. https://doi.org/10.1128/AEM.00842-09
- Fukuda, K., Yamamoto, A., Ganzorig, K., Khuukhenbaatar, J., Senda, A., Saito, T. and Urashima, T. (2010) Chemical characterization of the oligosaccharides in Bactrian camel (Camelus bactrianus) milk and colostrum. J. Dairy Sci. 93, 5572-5587. https://doi.org/10.3168/jds.2010-3151
- Nakamura, T., Urashima, T., Mizukami, T., Fukushima, M., Arai, I., Senshu, T., Imazu, K., Nakao, T., Saito, T., Ye, Z., Zuo, H. and Wu, K. (2003) Composition and oligosaccharides of a milk sample of the giant panda, Ailuropoda melanoleuca. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 135, 439-448. https://doi.org/10.1016/S1096-4959(03)00093-9
- Osthoff, G., Dickens, L., Urashima, T., Bonnet, S. L., Uemura, Y. and van der Westhuizen, J. H. (2008) Structural characterization of oligosaccharides in the milk of an African elephant (Loxodonta africana africana). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150, 74-84. https://doi.org/10.1016/j.cbpb.2008.01.010
- Uemura, Y., Asakuma, S., Yon, L., Saito, T., Fukuda, K., Arai, I. and Urashima, T. (2006) Structural determination of the oligosaccharides in the milk of an Asian elephant (Elephas maximus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 145, 468-478. https://doi.org/10.1016/j.cbpa.2006.08.001
- Uemura, Y., Takahashi, S., Senda, A., Fukuda, K., Saito, T., Oftedal, O. T. and Urashima, T. (2009) Chemical characterization of milk oligosaccharides of a spotted hyena (Crocuta crocuta). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152, 158-161. https://doi.org/10.1016/j.cbpa.2008.09.013
- Urashima, T., Kobayashi, M., Asakuma, S., Uemura, Y., Arai, I., Fukuda, K., Saito, T., Mogoe, T., Ishikawa, H. and Fukui, Y. (2007) Chemical characterization of the oligosaccharides in Bryde's whale (Balaenoptera edeni) and Sei whale (Balaenoptera borealis lesson) milk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146, 153-159. https://doi.org/10.1016/j.cbpb.2006.10.094
- Urashima, T., Odaka, G., Asakuma, S., Uemura, Y., Goto, K., Senda, A., Saito, T., Fukuda, K., Messer, M. and Oftedal, O. T. (2009) Chemical characterization of oligosaccharides in chimpanzee, bonobo, gorilla, orangutan, and siamang milk or colostrum. Glycobiology 19, 499-508. https://doi.org/10.1093/glycob/cwp006
Cited by
- Bioanalytical challenge: A review of environmental and pharmaceuticals contaminants in human milk vol.130, 2016, https://doi.org/10.1016/j.jpba.2016.06.012
- Human Milk Composition vol.60, pp.1, 2013, https://doi.org/10.1016/j.pcl.2012.10.002
- Characterizing the release of bioactiveN-glycans from dairy products by a novel endo-β-N-acetylglucosaminidase vol.31, pp.5, 2015, https://doi.org/10.1002/btpr.2135
- Comparison of anti-pathogenic activities of the human and bovine milk N -glycome: Fucosylation is a key factor vol.235, 2017, https://doi.org/10.1016/j.foodchem.2017.05.026
- Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012 vol.36, pp.3, 2017, https://doi.org/10.1002/mas.21471
- A profile of sphingolipids and related compounds tentatively identified in yak milk vol.99, pp.7, 2016, https://doi.org/10.3168/jds.2015-10431
- The Impact of the Milk Glycobiome on the Neonate Gut Microbiota vol.3, pp.1, 2015, https://doi.org/10.1146/annurev-animal-022114-111112
- Changes in the Milk Metabolome of the Giant Panda (Ailuropoda melanoleuca) with Time after Birth – Three Phases in Early Lactation and Progressive Individual Differences vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0143417
- 2′-fucosyllactose: an abundant, genetically determined soluble glycan present in human milk vol.71, pp.12, 2013, https://doi.org/10.1111/nure.12079
- A refined palate: Bacterial consumption of host glycans in the gut vol.23, pp.9, 2013, https://doi.org/10.1093/glycob/cwt040
- Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone vol.35, pp.6, 2014, https://doi.org/10.1002/elps.201300490
- Growth and Morbidity of Gambian Infants are Influenced by Maternal Milk Oligosaccharides and Infant Gut Microbiota vol.7, 2017, https://doi.org/10.1038/srep40466
- Development of a high-throughput glycoanalysis method for the characterization of oligosaccharides in human milk utilizing multiplexed capillary gel electrophoresis with laser-induced fluorescence detection vol.34, pp.16, 2013, https://doi.org/10.1002/elps.201300016
- Analysis, structural characterization, and bioactivity of oligosaccharides derived from lactose vol.35, pp.11, 2014, https://doi.org/10.1002/elps.201300567
- Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut 2014, https://doi.org/10.1038/pr.2014.156
- Capillary electrophoresis of sialylated oligosaccharides in milk from different species vol.1409, 2015, https://doi.org/10.1016/j.chroma.2015.07.076
- Identification of Oligosaccharides in Feces of Breast-fed Infants and Their Correlation with the Gut Microbial Community vol.15, pp.9, 2016, https://doi.org/10.1074/mcp.M116.060665
- Chromatographic methods for the analysis of oligosaccharides in human milk vol.9, pp.7, 2017, https://doi.org/10.1039/C6AY02982E
- Probiotics and Necrotizing Enterocolitis vol.41, pp.4, 2014, https://doi.org/10.1016/j.clp.2014.08.014
- Use of canonical discriminant analysis to study signatures of selection in cattle vol.48, pp.1, 2016, https://doi.org/10.1186/s12711-016-0236-7
- Comparative analysis of native and permethylated human milk oligosaccharides by liquid chromatography coupled to high resolution mass spectrometry 2017, https://doi.org/10.1016/j.jchromb.2017.03.028
- Systematic review of the concentrations of oligosaccharides in human milk vol.75, pp.11, 2017, https://doi.org/10.1093/nutrit/nux044
- Milk Glycans and Their Interaction with the Infant-Gut Microbiota vol.9, pp.1, 2018, https://doi.org/10.1146/annurev-food-030216-030207
- Characterization of porcine milk oligosaccharides over lactation between primiparous and multiparous female pigs vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23025-x
- Enzymatic Cascade Synthesis Provides Novel Linear Human Milk Oligosaccharides as Reference Standards for xCGE-LIF Based High-Throughput Analysis pp.18606768, 2019, https://doi.org/10.1002/biot.201800305