References
- Satir, P. (1995) Landmarks in cilia research from Leeuwenhoek to us. Cell Motil. Cytoskeleton 32, 90-94. https://doi.org/10.1002/cm.970320203
- Ishikawa, H. and Marshall, W. F. (2011) Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222-234. https://doi.org/10.1038/nrm3085
- Kobayashi, T. and Dynlacht, B. D. (2011) Regulating the transition from centriole to basal body. J. Cell Biol. 193, 435-444. https://doi.org/10.1083/jcb.201101005
- Avasthi, P. and Marshall, W. F. (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83, S30-42. https://doi.org/10.1016/j.diff.2011.11.015
- Taschner, M., Bhogaraju, S. and Lorentzen, E. (2012) Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83, S12-22. https://doi.org/10.1016/j.diff.2011.11.001
- Kozminski, K. G., Johnson, K. A., Forscher, P. and Rosenbaum, J. L. (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. Sci. U.S.A. 90, 5519-5523. https://doi.org/10.1073/pnas.90.12.5519
- Badano, J. L., Mitsuma, N., Beales, P. L. and Katsanis, N. (2006) The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125-148. https://doi.org/10.1146/annurev.genom.7.080505.115610
- Novarino, G., Akizu, N. and Gleeson, J. G. (2011) Modeling human disease in humans: the ciliopathies. Cell 147, 70-79. https://doi.org/10.1016/j.cell.2011.09.014
- Reiter, J. F., Blacque, O. E. and Leroux, M. R. (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13, 608-618. https://doi.org/10.1038/embor.2012.73
- Dishinger, J. F., Kee, H. L., Jenkins, P. M., Fan, S., Hurd, T. W., Hammond, J. W., Truong, Y. N., Margolis, B., Martens, J. R. and Verhey, K. J. (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703-710. https://doi.org/10.1038/ncb2073
- Kee, H. L., Dishinger, J. F., Blasius, T. L., Liu, C. J., Margolis, B. and Verhey, K. J. (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431-437. https://doi.org/10.1038/ncb2450
- Besschetnova, T. Y., Kolpakova-Hart, E., Guan, Y., Zhou, J., Olsen, B. R. and Shah, J. V. (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr. Biol. 20, 182-187. https://doi.org/10.1016/j.cub.2009.11.072
- Wilson, N. F. and Lefebvre, P. A. (2004) Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot. Cell 3, 1307-1319. https://doi.org/10.1128/EC.3.5.1307-1319.2004
- Ou, Y., Ruan, Y., Cheng, M., Moser, J. J., Rattner, J. B. and van der Hoorn, F. A. (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp. Cell Res. 315, 2802-2817. https://doi.org/10.1016/j.yexcr.2009.06.028
- Quarmby, L. M. and Mahjoub, M. R. (2005) Caught Nek-ing: cilia and centrioles. J. Cell Sci. 118, 5161-5169. https://doi.org/10.1242/jcs.02681
- Upadhya, P., Birkenmeier, E. H., Birkenmeier, C. S. and Barker, J. E. (2000) Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc. Natl. Acad. Sci. U.S.A. 97, 217-221. https://doi.org/10.1073/pnas.97.1.217
- White, M. C. and Quarmby, L. M. (2008) The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol. 9, 29.
- Liu, S., Lu, W., Obara, T., Kuida, S., Lehoczky, J., Dewar, K., Drummond, I. A. and Beier, D. R. (2002) A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 129, 5839-5846. https://doi.org/10.1242/dev.00173
- Smith, L. A., Bukanov, N. O., Husson, H., Russo, R. J., Barry, T. C., Taylor, A. L., Beier, D. R. and Ibraghimov- Beskrovnaya, O. (2006) Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J. Am. Soc. Nephrol. 17, 2821-2831. https://doi.org/10.1681/ASN.2006020136
- Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W. and Yost, H. J. (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651-654. https://doi.org/10.1038/nature07753
- DiBella, L. M., Park, A. and Sun, Z. (2009) Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum. Mol. Genet. 18, 595-606. https://doi.org/10.1093/hmg/ddn384
- Yuan, S., Li, J., Diener, D. R., Choma, M. A., Rosenbaum, J. L. and Sun, Z. (2012) Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc. Natl. Acad. Sci. U.S.A. 109, 2021-2026. https://doi.org/10.1073/pnas.1112834109
- Wilson, N. F., Iyer, J. K., Buchheim, J. A. and Meek, W. (2008) Regulation of flagellar length in Chlamydomonas. Semin. Cell Dev. Biol. 19, 494-501. https://doi.org/10.1016/j.semcdb.2008.07.005
- Omori, Y., Chaya, T., Katoh, K., Kajimura, N., Sato, S., Muraoka, K., Ueno, S., Koyasu, T., Kondo, M. and Furukawa, T. (2010) Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc. Natl. Acad. Sci. U.S.A. 107, 22671-22676. https://doi.org/10.1073/pnas.1009437108
- Ozgul, R. K., Siemiatkowska, A. M., Yucel, D., Myers, C. A., Collin, R. W., Zonneveld, M. N., Beryozkin, A., Banin, E., Hoyng, C. B., van den Born, L. I., Bose, R., Shen, W., Sharon, D., Cremers, F. P., Klevering, B. J., den Hollander, A. I. and Corbo, J. C. (2011) Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am. J. Hum. Genet. 89, 253-264. https://doi.org/10.1016/j.ajhg.2011.07.005
- Stone, E. M., Luo, X., Heon, E., Lam, B. L., Weleber, R. G., Halder, J. A., Affatigato, L. M., Goldberg, J. B., Sumaroka, A., Schwartz, S. B., Cideciyan, A. V. and Jacobson, S. G. (2011) Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene. Invest. Ophthalmol. Vis. Sci. 52, 9665-9673.
- Tucker, B. A., Scheetz, T. E., Mullins, R. F., DeLuca, A. P., Hoffmann, J. M., Johnston, R. M., Jacobson, S. G., Sheffield, V. C. and Stone, E. M. (2011) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc. Natl. Acad. Sci. U.S.A. 108, E569-576. https://doi.org/10.1073/pnas.1017832108
- Ko, H. W., Norman, R. X., Tran, J., Fuller, K. P., Fukuda, M. and Eggenschwiler, J. T. (2010) Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev. Cell 18, 237-247. https://doi.org/10.1016/j.devcel.2009.12.014
- Clement, A., Solnica-Krezel, L. and Gould, K. L. (2011) The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development 138, 291-302. https://doi.org/10.1242/dev.055038
- McMahon, A. P., Ingham, P. W. and Tabin, C. J. (2003) Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1-114. https://doi.org/10.1016/S0070-2153(03)53002-2
- Huangfu, D. and Anderson, K. V. (2006) Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3-14. https://doi.org/10.1242/dev.02169
- Varjosalo, M. and Taipale, J. (2008) Hedgehog: functions and mechanisms. Genes Dev. 22, 2454-2472. https://doi.org/10.1101/gad.1693608
- Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L. and Anderson, K. V. (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83-87. https://doi.org/10.1038/nature02061
- Corbit, K. C., Aanstad, P., Singla, V., Norman, A. R., Stainier, D. Y. and Reiter, J. F. (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018-1021. https://doi.org/10.1038/nature04117
- Rohatgi, R., Milenkovic, L. and Scott, M. P. (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372-376. https://doi.org/10.1126/science.1139740
- Haycraft, C. J., Banizs, B., Aydin-Son, Y., Zhang, Q., Michaud, E. J. and Yoder, B. K. (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53. https://doi.org/10.1371/journal.pgen.0010053
- Wen, X., Lai, C. K., Evangelista, M., Hongo, J. A., de Sauvage, F. J. and Scales, S. J. (2010) Kinetics of hedgehog- dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol. Cell. Biol. 30, 1910-1922. https://doi.org/10.1128/MCB.01089-09
- Semenov, M. V., Habas, R., Macdonald, B. T. and He, X. (2007) SnapShot: Noncanonical Wnt Signaling Pathways. Cell 131, 1378.
- Macdonald, B. T., Semenov, M. V. and He, X. (2007) SnapShot: Wnt/beta-catenin signaling. Cell 131, 1204.
- Otto, E. A., Schermer, B., Obara, T., O'Toole, J. F., Hiller, K. S., Mueller, A. M., Ruf, R. G., Hoefele, J., Beekmann, F., Landau, D., Foreman, J. W., Goodship, J. A., Strachan, T., Kispert, A., Wolf, M. T., Gagnadoux, M. F., Nivet, H., Antignac, C., Walz, G., Drummond, I. A., Benzing, T. and Hildebrandt, F. (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413-420. https://doi.org/10.1038/ng1217
- Watanabe, D., Saijoh, Y., Nonaka, S., Sasaki, G., Ikawa, Y., Yokoyama, T. and Hamada, H. (2003) The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia. Development 130, 1725-1734. https://doi.org/10.1242/dev.00407
- Corbit, K. C., Shyer, A. E., Dowdle, W. E., Gaulden, J., Singla, V., Chen, M. H., Chuang, P. T. and Reiter, J. F. (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70-76. https://doi.org/10.1038/ncb1670
- Huang, P. and Schier, A. F. (2009) Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136, 3089-3098. https://doi.org/10.1242/dev.041343
- Ocbina, P. J., Tuson, M. and Anderson, K. V. (2009) Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PloS One 4, e6839. https://doi.org/10.1371/journal.pone.0006839
- Afzelius, B. A. (1976) A human syndrome caused by immotile cilia. Science 193, 317-319. https://doi.org/10.1126/science.1084576
- Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M. and Hirokawa, N. (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829-837. https://doi.org/10.1016/S0092-8674(00)81705-5
- Garcia-Gonzalo, F. R., Corbit, K. C., Sirerol-Piquer, M. S., Ramaswami, G., Otto, E. A., Noriega, T. R., Seol, A. D., Robinson, J. F., Bennett, C. L., Josifova, D. J., Garcia- Verdugo, J. M., Katsanis, N., Hildebrandt, F. and Reiter, J. F. (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776-784. https://doi.org/10.1038/ng.891
Cited by
- Communication, the centrosome and the immunological synapse vol.369, pp.1650, 2014, https://doi.org/10.1098/rstb.2013.0463
- Mutations in CDC14A , Encoding a Protein Phosphatase Involved in Hair Cell Ciliogenesis, Cause Autosomal-Recessive Severe to Profound Deafness vol.98, pp.6, 2016, https://doi.org/10.1016/j.ajhg.2016.04.015
- Comparative analysis of genes regulated by Dzip1/iguanaand hedgehog in zebrafish vol.244, pp.2, 2015, https://doi.org/10.1002/dvdy.24237
- Lithium-induced developmental anomalies in the spirotrich ciliate Stylonychia lemnae (Ciliophora, Hypotrichida) vol.51, pp.4, 2015, https://doi.org/10.1016/j.ejop.2015.06.006
- Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly vol.207, pp.3, 2014, https://doi.org/10.1083/jcb.201404016
- Primary cilia in energy balance signaling and metabolic disorder vol.48, pp.12, 2015, https://doi.org/10.5483/BMBRep.2015.48.12.229
- Ciliary smoothened-mediated noncanonical hedgehog signaling promotes tubulin acetylation vol.480, pp.4, 2016, https://doi.org/10.1016/j.bbrc.2016.10.093
- A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network vol.17, pp.S3, 2016, https://doi.org/10.1186/s12863-016-0466-2
- A luminescent lanthanide approach towards direct visualization of primary cilia in living cells vol.53, pp.52, 2017, https://doi.org/10.1039/C7CC03021E
- A multifunctional, multi-pathway intracellular localization signal in Huntingtin vol.6, pp.2, 2013, https://doi.org/10.4161/cib.23318
- The nephronophthisis gene product NPHP2/Inversin interacts with Aurora A and interferes with HDAC6-mediated cilia disassembly vol.28, pp.11, 2013, https://doi.org/10.1093/ndt/gft316
- Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migration vol.336, 2016, https://doi.org/10.1016/j.neuroscience.2016.08.045
- Repeated restraint stress promotes hippocampal neuronal cell ciliogenesis and proliferation in mice vol.34, pp.4, 2018, https://doi.org/10.5625/lar.2018.34.4.203
- Deubiquitylase USP9X maintains centriolar satellite integrity by stabilizing pericentriolar material 1 protein vol.132, pp.2, 2018, https://doi.org/10.1242/jcs.221663