DOI QR코드

DOI QR Code

The primary cilium as a multiple cellular signaling scaffold in development and disease

  • Received : 2012.08.08
  • Published : 2012.08.31

Abstract

Primary cilia, single hair-like appendage on the surface of the most mammalian cells, were once considered to be vestigial cellular organelles for a past century because of their tiny structure and unknown function. Although they lack ancestral motility function of cilia or flagella, they share common ground with multiciliated motile cilia and flagella on internal structure such as microtubule based nine outer doublets nucleated from the base of mother centrioles called basal body. Making cilia, ciliogenesis, in cells depends on the cell cycle stage due to reuse of centrioles for cell division forming mitotic spindle pole (M phase) and assembling cilia from basal body (starting G1 phase and maintaining most of interphase). Ciliary assembly required two conflicting processes such as assembly and disassembly and balance between these two processes determines the length of cilia. Both process required highly conserved transport system to supply needed substance to grow tip of cilia and bring ciliary turnover product back to the base of cilia using motor protein, kinesin and dynein, and transport protein complex, IFT particles. Disruption of ciliary structure or function causes multiple human disorder called ciliopathies affecting disease of diverse ciliated tissues ranging from eye, kidney, respiratory tract and brain. Recent explosion of research on the primary cilia and their involvement on animal development and disease attracts scientific interest on how extensively the function of cilia related to specific cell physiology and signaling pathway. In this review, I introduce general features of primary cilia and recent progress in understanding of the ciliary length control and signaling pathways transduced through primary cilia in vertebrates.

Keywords

References

  1. Satir, P. (1995) Landmarks in cilia research from Leeuwenhoek to us. Cell Motil. Cytoskeleton 32, 90-94. https://doi.org/10.1002/cm.970320203
  2. Ishikawa, H. and Marshall, W. F. (2011) Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222-234. https://doi.org/10.1038/nrm3085
  3. Kobayashi, T. and Dynlacht, B. D. (2011) Regulating the transition from centriole to basal body. J. Cell Biol. 193, 435-444. https://doi.org/10.1083/jcb.201101005
  4. Avasthi, P. and Marshall, W. F. (2012) Stages of ciliogenesis and regulation of ciliary length. Differentiation 83, S30-42. https://doi.org/10.1016/j.diff.2011.11.015
  5. Taschner, M., Bhogaraju, S. and Lorentzen, E. (2012) Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83, S12-22. https://doi.org/10.1016/j.diff.2011.11.001
  6. Kozminski, K. G., Johnson, K. A., Forscher, P. and Rosenbaum, J. L. (1993) A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. Sci. U.S.A. 90, 5519-5523. https://doi.org/10.1073/pnas.90.12.5519
  7. Badano, J. L., Mitsuma, N., Beales, P. L. and Katsanis, N. (2006) The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125-148. https://doi.org/10.1146/annurev.genom.7.080505.115610
  8. Novarino, G., Akizu, N. and Gleeson, J. G. (2011) Modeling human disease in humans: the ciliopathies. Cell 147, 70-79. https://doi.org/10.1016/j.cell.2011.09.014
  9. Reiter, J. F., Blacque, O. E. and Leroux, M. R. (2012) The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13, 608-618. https://doi.org/10.1038/embor.2012.73
  10. Dishinger, J. F., Kee, H. L., Jenkins, P. M., Fan, S., Hurd, T. W., Hammond, J. W., Truong, Y. N., Margolis, B., Martens, J. R. and Verhey, K. J. (2010) Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-beta2 and RanGTP. Nat. Cell Biol. 12, 703-710. https://doi.org/10.1038/ncb2073
  11. Kee, H. L., Dishinger, J. F., Blasius, T. L., Liu, C. J., Margolis, B. and Verhey, K. J. (2012) A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat. Cell Biol. 14, 431-437. https://doi.org/10.1038/ncb2450
  12. Besschetnova, T. Y., Kolpakova-Hart, E., Guan, Y., Zhou, J., Olsen, B. R. and Shah, J. V. (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr. Biol. 20, 182-187. https://doi.org/10.1016/j.cub.2009.11.072
  13. Wilson, N. F. and Lefebvre, P. A. (2004) Regulation of flagellar assembly by glycogen synthase kinase 3 in Chlamydomonas reinhardtii. Eukaryot. Cell 3, 1307-1319. https://doi.org/10.1128/EC.3.5.1307-1319.2004
  14. Ou, Y., Ruan, Y., Cheng, M., Moser, J. J., Rattner, J. B. and van der Hoorn, F. A. (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp. Cell Res. 315, 2802-2817. https://doi.org/10.1016/j.yexcr.2009.06.028
  15. Quarmby, L. M. and Mahjoub, M. R. (2005) Caught Nek-ing: cilia and centrioles. J. Cell Sci. 118, 5161-5169. https://doi.org/10.1242/jcs.02681
  16. Upadhya, P., Birkenmeier, E. H., Birkenmeier, C. S. and Barker, J. E. (2000) Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice. Proc. Natl. Acad. Sci. U.S.A. 97, 217-221. https://doi.org/10.1073/pnas.97.1.217
  17. White, M. C. and Quarmby, L. M. (2008) The NIMA-family kinase, Nek1 affects the stability of centrosomes and ciliogenesis. BMC Cell Biol. 9, 29.
  18. Liu, S., Lu, W., Obara, T., Kuida, S., Lehoczky, J., Dewar, K., Drummond, I. A. and Beier, D. R. (2002) A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 129, 5839-5846. https://doi.org/10.1242/dev.00173
  19. Smith, L. A., Bukanov, N. O., Husson, H., Russo, R. J., Barry, T. C., Taylor, A. L., Beier, D. R. and Ibraghimov- Beskrovnaya, O. (2006) Development of polycystic kidney disease in juvenile cystic kidney mice: insights into pathogenesis, ciliary abnormalities, and common features with human disease. J. Am. Soc. Nephrol. 17, 2821-2831. https://doi.org/10.1681/ASN.2006020136
  20. Neugebauer, J. M., Amack, J. D., Peterson, A. G., Bisgrove, B. W. and Yost, H. J. (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458, 651-654. https://doi.org/10.1038/nature07753
  21. DiBella, L. M., Park, A. and Sun, Z. (2009) Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum. Mol. Genet. 18, 595-606. https://doi.org/10.1093/hmg/ddn384
  22. Yuan, S., Li, J., Diener, D. R., Choma, M. A., Rosenbaum, J. L. and Sun, Z. (2012) Target-of-rapamycin complex 1 (Torc1) signaling modulates cilia size and function through protein synthesis regulation. Proc. Natl. Acad. Sci. U.S.A. 109, 2021-2026. https://doi.org/10.1073/pnas.1112834109
  23. Wilson, N. F., Iyer, J. K., Buchheim, J. A. and Meek, W. (2008) Regulation of flagellar length in Chlamydomonas. Semin. Cell Dev. Biol. 19, 494-501. https://doi.org/10.1016/j.semcdb.2008.07.005
  24. Omori, Y., Chaya, T., Katoh, K., Kajimura, N., Sato, S., Muraoka, K., Ueno, S., Koyasu, T., Kondo, M. and Furukawa, T. (2010) Negative regulation of ciliary length by ciliary male germ cell-associated kinase (Mak) is required for retinal photoreceptor survival. Proc. Natl. Acad. Sci. U.S.A. 107, 22671-22676. https://doi.org/10.1073/pnas.1009437108
  25. Ozgul, R. K., Siemiatkowska, A. M., Yucel, D., Myers, C. A., Collin, R. W., Zonneveld, M. N., Beryozkin, A., Banin, E., Hoyng, C. B., van den Born, L. I., Bose, R., Shen, W., Sharon, D., Cremers, F. P., Klevering, B. J., den Hollander, A. I. and Corbo, J. C. (2011) Exome sequencing and cis-regulatory mapping identify mutations in MAK, a gene encoding a regulator of ciliary length, as a cause of retinitis pigmentosa. Am. J. Hum. Genet. 89, 253-264. https://doi.org/10.1016/j.ajhg.2011.07.005
  26. Stone, E. M., Luo, X., Heon, E., Lam, B. L., Weleber, R. G., Halder, J. A., Affatigato, L. M., Goldberg, J. B., Sumaroka, A., Schwartz, S. B., Cideciyan, A. V. and Jacobson, S. G. (2011) Autosomal recessive retinitis pigmentosa caused by mutations in the MAK gene. Invest. Ophthalmol. Vis. Sci. 52, 9665-9673.
  27. Tucker, B. A., Scheetz, T. E., Mullins, R. F., DeLuca, A. P., Hoffmann, J. M., Johnston, R. M., Jacobson, S. G., Sheffield, V. C. and Stone, E. M. (2011) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc. Natl. Acad. Sci. U.S.A. 108, E569-576. https://doi.org/10.1073/pnas.1017832108
  28. Ko, H. W., Norman, R. X., Tran, J., Fuller, K. P., Fukuda, M. and Eggenschwiler, J. T. (2010) Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev. Cell 18, 237-247. https://doi.org/10.1016/j.devcel.2009.12.014
  29. Clement, A., Solnica-Krezel, L. and Gould, K. L. (2011) The Cdc14B phosphatase contributes to ciliogenesis in zebrafish. Development 138, 291-302. https://doi.org/10.1242/dev.055038
  30. McMahon, A. P., Ingham, P. W. and Tabin, C. J. (2003) Developmental roles and clinical significance of hedgehog signaling. Curr. Top. Dev. Biol. 53, 1-114. https://doi.org/10.1016/S0070-2153(03)53002-2
  31. Huangfu, D. and Anderson, K. V. (2006) Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3-14. https://doi.org/10.1242/dev.02169
  32. Varjosalo, M. and Taipale, J. (2008) Hedgehog: functions and mechanisms. Genes Dev. 22, 2454-2472. https://doi.org/10.1101/gad.1693608
  33. Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L. and Anderson, K. V. (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83-87. https://doi.org/10.1038/nature02061
  34. Corbit, K. C., Aanstad, P., Singla, V., Norman, A. R., Stainier, D. Y. and Reiter, J. F. (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018-1021. https://doi.org/10.1038/nature04117
  35. Rohatgi, R., Milenkovic, L. and Scott, M. P. (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372-376. https://doi.org/10.1126/science.1139740
  36. Haycraft, C. J., Banizs, B., Aydin-Son, Y., Zhang, Q., Michaud, E. J. and Yoder, B. K. (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53. https://doi.org/10.1371/journal.pgen.0010053
  37. Wen, X., Lai, C. K., Evangelista, M., Hongo, J. A., de Sauvage, F. J. and Scales, S. J. (2010) Kinetics of hedgehog- dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol. Cell. Biol. 30, 1910-1922. https://doi.org/10.1128/MCB.01089-09
  38. Semenov, M. V., Habas, R., Macdonald, B. T. and He, X. (2007) SnapShot: Noncanonical Wnt Signaling Pathways. Cell 131, 1378.
  39. Macdonald, B. T., Semenov, M. V. and He, X. (2007) SnapShot: Wnt/beta-catenin signaling. Cell 131, 1204.
  40. Otto, E. A., Schermer, B., Obara, T., O'Toole, J. F., Hiller, K. S., Mueller, A. M., Ruf, R. G., Hoefele, J., Beekmann, F., Landau, D., Foreman, J. W., Goodship, J. A., Strachan, T., Kispert, A., Wolf, M. T., Gagnadoux, M. F., Nivet, H., Antignac, C., Walz, G., Drummond, I. A., Benzing, T. and Hildebrandt, F. (2003) Mutations in INVS encoding inversin cause nephronophthisis type 2, linking renal cystic disease to the function of primary cilia and left-right axis determination. Nat. Genet. 34, 413-420. https://doi.org/10.1038/ng1217
  41. Watanabe, D., Saijoh, Y., Nonaka, S., Sasaki, G., Ikawa, Y., Yokoyama, T. and Hamada, H. (2003) The left-right determinant Inversin is a component of node monocilia and other 9+0 cilia. Development 130, 1725-1734. https://doi.org/10.1242/dev.00407
  42. Corbit, K. C., Shyer, A. E., Dowdle, W. E., Gaulden, J., Singla, V., Chen, M. H., Chuang, P. T. and Reiter, J. F. (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70-76. https://doi.org/10.1038/ncb1670
  43. Huang, P. and Schier, A. F. (2009) Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 136, 3089-3098. https://doi.org/10.1242/dev.041343
  44. Ocbina, P. J., Tuson, M. and Anderson, K. V. (2009) Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PloS One 4, e6839. https://doi.org/10.1371/journal.pone.0006839
  45. Afzelius, B. A. (1976) A human syndrome caused by immotile cilia. Science 193, 317-319. https://doi.org/10.1126/science.1084576
  46. Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M. and Hirokawa, N. (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829-837. https://doi.org/10.1016/S0092-8674(00)81705-5
  47. Garcia-Gonzalo, F. R., Corbit, K. C., Sirerol-Piquer, M. S., Ramaswami, G., Otto, E. A., Noriega, T. R., Seol, A. D., Robinson, J. F., Bennett, C. L., Josifova, D. J., Garcia- Verdugo, J. M., Katsanis, N., Hildebrandt, F. and Reiter, J. F. (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 43, 776-784. https://doi.org/10.1038/ng.891

Cited by

  1. Communication, the centrosome and the immunological synapse vol.369, pp.1650, 2014, https://doi.org/10.1098/rstb.2013.0463
  2. Mutations in CDC14A , Encoding a Protein Phosphatase Involved in Hair Cell Ciliogenesis, Cause Autosomal-Recessive Severe to Profound Deafness vol.98, pp.6, 2016, https://doi.org/10.1016/j.ajhg.2016.04.015
  3. Comparative analysis of genes regulated by Dzip1/iguanaand hedgehog in zebrafish vol.244, pp.2, 2015, https://doi.org/10.1002/dvdy.24237
  4. Lithium-induced developmental anomalies in the spirotrich ciliate Stylonychia lemnae (Ciliophora, Hypotrichida) vol.51, pp.4, 2015, https://doi.org/10.1016/j.ejop.2015.06.006
  5. Clarin-1 acts as a modulator of mechanotransduction activity and presynaptic ribbon assembly vol.207, pp.3, 2014, https://doi.org/10.1083/jcb.201404016
  6. Primary cilia in energy balance signaling and metabolic disorder vol.48, pp.12, 2015, https://doi.org/10.5483/BMBRep.2015.48.12.229
  7. Ciliary smoothened-mediated noncanonical hedgehog signaling promotes tubulin acetylation vol.480, pp.4, 2016, https://doi.org/10.1016/j.bbrc.2016.10.093
  8. A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network vol.17, pp.S3, 2016, https://doi.org/10.1186/s12863-016-0466-2
  9. A luminescent lanthanide approach towards direct visualization of primary cilia in living cells vol.53, pp.52, 2017, https://doi.org/10.1039/C7CC03021E
  10. A multifunctional, multi-pathway intracellular localization signal in Huntingtin vol.6, pp.2, 2013, https://doi.org/10.4161/cib.23318
  11. The nephronophthisis gene product NPHP2/Inversin interacts with Aurora A and interferes with HDAC6-mediated cilia disassembly vol.28, pp.11, 2013, https://doi.org/10.1093/ndt/gft316
  12. Telencephalic-olfactory bulb ventricle wall organization in Austrolebias charrua: Cytoarchitecture, proliferation dynamics, neurogenesis and migration vol.336, 2016, https://doi.org/10.1016/j.neuroscience.2016.08.045
  13. Repeated restraint stress promotes hippocampal neuronal cell ciliogenesis and proliferation in mice vol.34, pp.4, 2018, https://doi.org/10.5625/lar.2018.34.4.203
  14. Deubiquitylase USP9X maintains centriolar satellite integrity by stabilizing pericentriolar material 1 protein vol.132, pp.2, 2018, https://doi.org/10.1242/jcs.221663