DOI QR코드

DOI QR Code

Electronic and Magnetic Structure Calculations of Cubane-type Mn4 Cluster

Cubane-type Mn4 클러스터의 전자구조 및 자기구조 계산

  • 박기택 (국민대학교 나노전자물리학과)
  • Received : 2012.07.10
  • Accepted : 2012.08.18
  • Published : 2012.08.31

Abstract

We have studied electronic and magnetic structure of cubane-type Mn4 cluster using OpenMX method based on density functional method. The calculated density of states shows that the octahedron of O atoms split $e_g$ and $t_{2g}$ energy levels like bulk MnO with cubic structure. Total energy with antiferromagnetic spin configuration is lower than those of other spin configurations because of super exchange interaction. Calculated exchange interaction J between Mn atoms with anti-parallel spin is larger than between Mn atoms with parallel spin.

Cubane-type $Mn_4$ 클러스터의 전기구조 및 자기적 성질을 제1원리의 범밀도함수법을 이용하여 계산하였다. 그 결과, 전자구조는 벌크 MnO와 비슷한 Mn 주위의 팔면체 산소 원자에 의해 $t_{2g}$, $e_g$ 에너지 준위로 분리되어 있었다. 총에너지계산에서는 초교환작용으로 인해 반강자성적 상호작용이 가장 낮은 에너지를 가지고 있었고, Mn 원자 사이의 교환 상호작용 크기를 얻었다. Mn 사이의 교환 상호작용은 스핀이 평행인 원자사이보다 반평행인 원자사이에서 더 큰 값을 가지고 있었다.

Keywords

References

  1. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber, and S. Iwata, Science 303, 1831 (2004). https://doi.org/10.1126/science.1093087
  2. D. Sivanesan, K. Son, H. Lee, K. T. Park, Z. Jang, B. J. Suh, and S. Yoon, To be published in Eur. J. Inorg. Chem. (2012).
  3. T. A. Hudson, K. J. Berry, B. Moubaraki, K. S. Murray, and R. Robson, Inorg. Chem. 45, 3549 (2006). https://doi.org/10.1021/ic051779m
  4. T. M. Wilson, Int. J. Quantum Chem. IIIS, 757 (1970).
  5. K. Terakura, A. R. Williams, T. Oguchi and J. Kubler, Phys. Rev. Lett. 52, 1830 (1984). https://doi.org/10.1103/PhysRevLett.52.1830
  6. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864 (1964). https://doi.org/10.1103/PhysRev.136.B864
  7. www.openmx-square.org.
  8. T. Ozaki, Phys. Rev. B 67, 155108 (2003). https://doi.org/10.1103/PhysRevB.67.155108
  9. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004). https://doi.org/10.1103/PhysRevB.69.195113
  10. N. Troullier and L. J. Martine, Phys. Rev. B 43, 1993 (1991). https://doi.org/10.1103/PhysRevB.43.1993
  11. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). https://doi.org/10.1103/PhysRevB.23.5048
  12. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980). https://doi.org/10.1103/PhysRevLett.45.566
  13. K. Terakura, T. Oguchi, A. R. Williams, and Kübler, Phys. Rev. B 30, 4734 (1984). https://doi.org/10.1103/PhysRevB.30.4734
  14. M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 74, 045110 (2006). https://doi.org/10.1103/PhysRevB.74.045110
  15. C. Cao, S. Hill, and H. Cheng, Phys. Rev. Lett. 100, 167206 (2008). https://doi.org/10.1103/PhysRevLett.100.167206
  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

Cited by

  1. Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet vol.24, pp.4, 2014, https://doi.org/10.4283/JKMS.2014.24.4.097
  2. Magnetic Molecule vol.26, pp.4, 2016, https://doi.org/10.4283/JKMS.2016.26.4.119