References
- J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194. https://doi.org/10.1007/BF00130919
- J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 106-160.
- S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001), no. 3, 253-264. https://doi.org/10.1016/S0393-0440(01)00014-6
- S. D. Jung, K. R. Lee, and K. Richardson, Generalized Obata theorem and its applications on foliations, J. Math. Anal. Appl. 376 (2011), no. 1, 129-135. https://doi.org/10.1016/j.jmaa.2010.10.022
- F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. (2) 34 (1982), no. 4 525-538. https://doi.org/10.2748/tmj/1178229154
- J. Konderak and R. Wolak, Transversally harmonic maps between manifolds with Riemannian foliations, Q. J. Math. 54 (2003), no. 3, 335-354. https://doi.org/10.1093/qmath/hag019
- J. Konderak and R. Wolak, Some remarks on transversally harmonic maps, Glasg. Math. J. 50 (2008), no. 1, 1-16.
- P. Molino, Riemannian Foliations, translated from the French by Grant Cairns, Boston: Birkhaser, 1988.
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. https://doi.org/10.1307/mmj/1028999604
- H. K. Pak and J. H. Park, Transversal harmonic transformations for Riemannian foliations, Ann. Global Anal. Geom. 30 (2006), no. 1, 97-105. https://doi.org/10.1007/s10455-006-9032-x
- E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), no. 6, 1249-1275. https://doi.org/10.1353/ajm.1996.0053
- H. C. J. Sealey, Harmonic maps of small energy, Bull. London Math. Soc. 13 (1981), no. 5, 405-408. https://doi.org/10.1112/blms/13.5.405
- Ph. Tondeur, Foliations on Riemannian Manifolds, New-York, Springer-Verlag, 1988.
- Ph. Tondeur, Geometry of Foliations, Basel: Birkhauser Verlag, 1997.
- Y. L. Xin, Geometry of Harmonic Maps, Birkhauser, Boston, 1996.
- S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar. 56 (1990), no. 3-4, 239-245. https://doi.org/10.1007/BF01903838
Cited by
- Transversally holomorphic maps between Kähler foliations vol.416, pp.2, 2014, https://doi.org/10.1016/j.jmaa.2014.03.022
- Harmonic Maps and Bi-Harmonic Maps on CR-Manifolds and Foliated Riemannian Manifolds vol.04, pp.12, 2016, https://doi.org/10.4236/jamp.2016.412219
- Variation formulas for transversally harmonic and biharmonic maps vol.70, 2013, https://doi.org/10.1016/j.geomphys.2013.03.012