Acknowledgement
Supported by : Zhejiang Pharmaceutical College, National Nature Science Foundation of China
References
- L. Grafakos and R. Torres, Multilinear Calderon-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124-164. https://doi.org/10.1006/aima.2001.2028
- C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1-15. https://doi.org/10.4310/MRL.1999.v6.n1.a1
- A. K. Lerner, S. Ombrosi, C. Perze, R. H. Torres, and R. R. Trujillo-Gonzaalez, New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222-1264. https://doi.org/10.1016/j.aim.2008.10.014
- J. Lian and H. Wu, A class of commutators for multilinear fractional integrals in non-homogeneous spaces, J. Inequal. Appl. 2008 (2008), Article ID 373050, 17 pages.
- Y. Lin and S. Lu, Multilinear Calderon-Zygmund operator on Morrey type spaces, Anal. Theory Appl. 22 (2006), no. 4, 387-400. https://doi.org/10.1007/s10496-006-0387-4
- Y. Lin and S. Lu, Boundedness of multilinear singular integral operators on Hardy and Herz-type spaces, Hokkaido Math. J. 36 (2007), no. 3, 585-613. https://doi.org/10.14492/hokmj/1277472868
- E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), no. 1, 95-103. https://doi.org/10.1002/mana.19941660108
- Y. Sawano, Generalized Morrey spaces for non-doubling measures, Nonlinear Differential Equations Appl. 15 (2008), no. 4-5, 413-425. https://doi.org/10.1007/s00030-008-6032-5
- Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535-1544. https://doi.org/10.1007/s10114-005-0660-z
- Y. Shi and X. Tao, Boundedness for multilinear fractional integral operators on Herz type spaces, Appl. Math. J. Chinese Univ. Ser. B 23 (2008), no. 4, 437-446. https://doi.org/10.1007/s11766-008-1995-x
- Y. Shi and X. Tao, Multilinear Riesz potential operators on Herz-type spaces and generalized Morrey spaces, Hokkaido Math. J. 38 (2009), no. 4, 635-662. https://doi.org/10.14492/hokmj/1258554238
- E. M. Stein, Harmonic Analysis: Real-Variable methods, Orthogonality, and Oscillatory Integrals, Princeton N. J. Princeton Univ Press, 1993.
- X. Tao, Y. Shi, and S. Zhang, Boundedness of multilinear Riesz potential on the product of Morrey and Herz-Morrey spaces, Acta Math. Sinica (Chin. Ser.) 52 (2009), no. 3, 535-548.
-
X. Tolsa, BMO,
$H^{1}$ , and Calderon-Zygmund operators for nondoubling measures, Math. Ann. 319 (2001), no. 1, 89-149. https://doi.org/10.1007/PL00004432 - J. Xu, Boundedness of multilinear singular integrals for non-doubling measures, J. Math. Anal. Appl. 327 (2007), no. 1, 471-480. https://doi.org/10.1016/j.jmaa.2006.04.049
Cited by
- Boundedness and Compactness for the Commutators of Bilinear Operators on Morrey Spaces vol.42, pp.3, 2015, https://doi.org/10.1007/s11118-014-9455-0
- Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz–Morrey spaces vol.29, pp.1, 2016, https://doi.org/10.1007/s13163-015-0178-6
- Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces vol.2016, pp.1, 2016, https://doi.org/10.1186/s13660-015-0930-y
- Local Morrey and Campanato Spaces on Quasimetric Measure Spaces vol.2014, 2014, https://doi.org/10.1155/2014/172486
- The boundedness of multilinear operators on generalized Morrey spaces over the quasi-metric space of non-homogeneous type vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-330