DOI QR코드

DOI QR Code

SOME MULTI-SUBLINEAR OPERATORS ON GENERALIZED MORREY SPACES WITH NON-DOUBLING MEASURES

  • Shi, Yanlong (Department of fundamental Courses Zhejiang Pharmaceutical College) ;
  • Tao, Xiangxing (Department of Mathematics Zhejiang University of Science & Technology)
  • Received : 2010.09.09
  • Published : 2012.09.01

Abstract

In this paper the boundedness for a large class of multi-sublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calder$\acute{o}$n-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.

Keywords

Acknowledgement

Supported by : Zhejiang Pharmaceutical College, National Nature Science Foundation of China

References

  1. L. Grafakos and R. Torres, Multilinear Calderon-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124-164. https://doi.org/10.1006/aima.2001.2028
  2. C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1-15. https://doi.org/10.4310/MRL.1999.v6.n1.a1
  3. A. K. Lerner, S. Ombrosi, C. Perze, R. H. Torres, and R. R. Trujillo-Gonzaalez, New maximal functions and multiple weights for the multilinear Calderon-Zygmund theory, Adv. Math. 220 (2009), no. 4, 1222-1264. https://doi.org/10.1016/j.aim.2008.10.014
  4. J. Lian and H. Wu, A class of commutators for multilinear fractional integrals in non-homogeneous spaces, J. Inequal. Appl. 2008 (2008), Article ID 373050, 17 pages.
  5. Y. Lin and S. Lu, Multilinear Calderon-Zygmund operator on Morrey type spaces, Anal. Theory Appl. 22 (2006), no. 4, 387-400. https://doi.org/10.1007/s10496-006-0387-4
  6. Y. Lin and S. Lu, Boundedness of multilinear singular integral operators on Hardy and Herz-type spaces, Hokkaido Math. J. 36 (2007), no. 3, 585-613. https://doi.org/10.14492/hokmj/1277472868
  7. E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), no. 1, 95-103. https://doi.org/10.1002/mana.19941660108
  8. Y. Sawano, Generalized Morrey spaces for non-doubling measures, Nonlinear Differential Equations Appl. 15 (2008), no. 4-5, 413-425. https://doi.org/10.1007/s00030-008-6032-5
  9. Y. Sawano and H. Tanaka, Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1535-1544. https://doi.org/10.1007/s10114-005-0660-z
  10. Y. Shi and X. Tao, Boundedness for multilinear fractional integral operators on Herz type spaces, Appl. Math. J. Chinese Univ. Ser. B 23 (2008), no. 4, 437-446. https://doi.org/10.1007/s11766-008-1995-x
  11. Y. Shi and X. Tao, Multilinear Riesz potential operators on Herz-type spaces and generalized Morrey spaces, Hokkaido Math. J. 38 (2009), no. 4, 635-662. https://doi.org/10.14492/hokmj/1258554238
  12. E. M. Stein, Harmonic Analysis: Real-Variable methods, Orthogonality, and Oscillatory Integrals, Princeton N. J. Princeton Univ Press, 1993.
  13. X. Tao, Y. Shi, and S. Zhang, Boundedness of multilinear Riesz potential on the product of Morrey and Herz-Morrey spaces, Acta Math. Sinica (Chin. Ser.) 52 (2009), no. 3, 535-548.
  14. X. Tolsa, BMO, $H^{1}$, and Calderon-Zygmund operators for nondoubling measures, Math. Ann. 319 (2001), no. 1, 89-149. https://doi.org/10.1007/PL00004432
  15. J. Xu, Boundedness of multilinear singular integrals for non-doubling measures, J. Math. Anal. Appl. 327 (2007), no. 1, 471-480. https://doi.org/10.1016/j.jmaa.2006.04.049

Cited by

  1. Boundedness and Compactness for the Commutators of Bilinear Operators on Morrey Spaces vol.42, pp.3, 2015, https://doi.org/10.1007/s11118-014-9455-0
  2. Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz–Morrey spaces vol.29, pp.1, 2016, https://doi.org/10.1007/s13163-015-0178-6
  3. Necessary and sufficient conditions for boundedness of multilinear fractional integrals with rough kernels on Morrey type spaces vol.2016, pp.1, 2016, https://doi.org/10.1186/s13660-015-0930-y
  4. Local Morrey and Campanato Spaces on Quasimetric Measure Spaces vol.2014, 2014, https://doi.org/10.1155/2014/172486
  5. The boundedness of multilinear operators on generalized Morrey spaces over the quasi-metric space of non-homogeneous type vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-330