Acknowledgement
Supported by : Chinese National Science Foundation
References
- D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set methods, J. Comput. Phys. 148 (1999), no. 1, 2-22. https://doi.org/10.1006/jcph.1998.6090
- L. Brugnano and V. Casulli, Iterative solution of piecewise linear systems, SIAM J. Sci. Comput. 30 (2008), no. 1, 463-472. https://doi.org/10.1137/070681867
- R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equaton of mathematical physics, IBM J. Res. Dev. 11 (1928), no. 2, 215-234.
- G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, Germany, 1976.
- R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984.
- R. Hoppe, Multigrid algorithms for variational inequalities, SIAM J. Numer. Anal. 24 (1987), 1046-1065. https://doi.org/10.1137/0724069
- R. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal. 31 (1994), no. 2, 301-323. https://doi.org/10.1137/0731016
- S. Howison, F. Wilmott, and J. Dewynne, The Mathematics of Financial Derivative, Cambridge University Press, Cambridge, 1995.
- T. Karkkainen, K. Kunisch, and P. Tarvainen, Augmented Lagrangian active set methods for obstacle problems, J. Optim. Theory Appl. 119 (2003), no. 3, 499-533. https://doi.org/10.1023/B:JOTA.0000006687.57272.b6
- R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer. Math. 69 (1994), no. 2, 167-184. https://doi.org/10.1007/BF03325426
- R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities II, Numer. Math. 72 (1996), no. 4, 481-499. https://doi.org/10.1007/s002110050178
- K. Majava and X.-C. Tai, A level set method for solving free boundary problems associated with obstacles, Int. J. Numer. Anal. Model. 1 (2004), no. 2, 157-171.
- S. Osher and R. Fedkiw, Level Set Method and Dynamic Implicit Surfaces, Springer, NewYork, 2000.
- S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Al- gorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988), no. 1, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
- J. Rodrigues, Obstacle Problems in Mathematical Physics, Elsevier Science 1987.
- J. A. Sethian, Level Set Methods, Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Science, Cambridge University Press, Cambridge, 1996.
- J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, J. Differential Geom. 31 (1990), no. 1, 131-161. https://doi.org/10.4310/jdg/1214444092
- J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 4, 1591-1596. https://doi.org/10.1073/pnas.93.4.1591
- J. A. Sethian and J. D. Strain, Crystal growth and dendritic solidification, J. Comput. Phys. 98 (1992), no. 2, 231-253. https://doi.org/10.1016/0021-9991(92)90140-T
- F. Wang and X. L. Cheng, An algorithm for solving the double obstacle problems, Appl. Math. Comput. 201 (2008), no. 1-2, 221-228. https://doi.org/10.1016/j.amc.2007.12.015
- F. Wang, W. M. Han, and X. L. Cheng, Discontinuous Galerkin methods for solving elliptic variational inequalities, SIAM J. Numer. Anal. 48 (2010), no. 2, 708-733. https://doi.org/10.1137/09075891X
- L. Xue and X. L. Cheng, An algorithm for solving the obstacle problems, Comput. Math. Appl. 48 (2004), no. 10-11, 1651-1657. https://doi.org/10.1016/j.camwa.2004.02.007
- Y. Zhang, Multilevel projection algorithm for solving obstacle problems, Comput. Math. Appl. 41 (2001), no. 12, 1505-1513. https://doi.org/10.1016/S0898-1221(01)00115-8