DOI QR코드

DOI QR Code

A FAST NUMERICAL METHOD FOR SOLVING A REGULARIZED PROBLEM ASSOCIATED WITH OBSTACLE PROBLEMS

  • Yuan, Daming (College of Mathematics and Information Science Nanchang Hangkong University, Department of Mathematics Zhejiang University) ;
  • Li, Xi (College of Mathematics and Information Science Nanchang Hangkong University) ;
  • Lei, Chengfeng (College of Mathematics and Information Science Nanchang Hangkong University)
  • Received : 2010.06.13
  • Published : 2012.09.01

Abstract

Kirsi Majava and Xue-Cheng Tai [12] proposed a modified level set method for solving a free boundary problem associated with unilateral obstacle problems. The proximal bundle method and gradient method were applied to solve the nonsmooth minimization problems and the regularized problem, respectively. In this paper, we extend this approach to solve the bilateral obstacle problems and employ Rung-Kutta method to solve the initial value problem derived from the regularized problem. Numerical experiments are presented to verify the efficiency of the methods.

Keywords

Acknowledgement

Supported by : Chinese National Science Foundation

References

  1. D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set methods, J. Comput. Phys. 148 (1999), no. 1, 2-22. https://doi.org/10.1006/jcph.1998.6090
  2. L. Brugnano and V. Casulli, Iterative solution of piecewise linear systems, SIAM J. Sci. Comput. 30 (2008), no. 1, 463-472. https://doi.org/10.1137/070681867
  3. R. Courant, K. Friedrichs, and H. Lewy, On the partial difference equaton of mathematical physics, IBM J. Res. Dev. 11 (1928), no. 2, 215-234.
  4. G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, Germany, 1976.
  5. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984.
  6. R. Hoppe, Multigrid algorithms for variational inequalities, SIAM J. Numer. Anal. 24 (1987), 1046-1065. https://doi.org/10.1137/0724069
  7. R. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal. 31 (1994), no. 2, 301-323. https://doi.org/10.1137/0731016
  8. S. Howison, F. Wilmott, and J. Dewynne, The Mathematics of Financial Derivative, Cambridge University Press, Cambridge, 1995.
  9. T. Karkkainen, K. Kunisch, and P. Tarvainen, Augmented Lagrangian active set methods for obstacle problems, J. Optim. Theory Appl. 119 (2003), no. 3, 499-533. https://doi.org/10.1023/B:JOTA.0000006687.57272.b6
  10. R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities I, Numer. Math. 69 (1994), no. 2, 167-184. https://doi.org/10.1007/BF03325426
  11. R. Kornhuber, Monotone multigrid methods for elliptic variational inequalities II, Numer. Math. 72 (1996), no. 4, 481-499. https://doi.org/10.1007/s002110050178
  12. K. Majava and X.-C. Tai, A level set method for solving free boundary problems associated with obstacles, Int. J. Numer. Anal. Model. 1 (2004), no. 2, 157-171.
  13. S. Osher and R. Fedkiw, Level Set Method and Dynamic Implicit Surfaces, Springer, NewYork, 2000.
  14. S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed: Al- gorithms based on Hamilton-Jacobi formulation, J. Comput. Phys. 79 (1988), no. 1, 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
  15. J. Rodrigues, Obstacle Problems in Mathematical Physics, Elsevier Science 1987.
  16. J. A. Sethian, Level Set Methods, Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Science, Cambridge University Press, Cambridge, 1996.
  17. J. A. Sethian, Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, J. Differential Geom. 31 (1990), no. 1, 131-161. https://doi.org/10.4310/jdg/1214444092
  18. J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 4, 1591-1596. https://doi.org/10.1073/pnas.93.4.1591
  19. J. A. Sethian and J. D. Strain, Crystal growth and dendritic solidification, J. Comput. Phys. 98 (1992), no. 2, 231-253. https://doi.org/10.1016/0021-9991(92)90140-T
  20. F. Wang and X. L. Cheng, An algorithm for solving the double obstacle problems, Appl. Math. Comput. 201 (2008), no. 1-2, 221-228. https://doi.org/10.1016/j.amc.2007.12.015
  21. F. Wang, W. M. Han, and X. L. Cheng, Discontinuous Galerkin methods for solving elliptic variational inequalities, SIAM J. Numer. Anal. 48 (2010), no. 2, 708-733. https://doi.org/10.1137/09075891X
  22. L. Xue and X. L. Cheng, An algorithm for solving the obstacle problems, Comput. Math. Appl. 48 (2004), no. 10-11, 1651-1657. https://doi.org/10.1016/j.camwa.2004.02.007
  23. Y. Zhang, Multilevel projection algorithm for solving obstacle problems, Comput. Math. Appl. 41 (2001), no. 12, 1505-1513. https://doi.org/10.1016/S0898-1221(01)00115-8