DOI QR코드

DOI QR Code

Cure and Thermal Degradation Kinetics of Epoxy/Organoclay Nanocomposite

  • Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
  • Received : 2012.06.30
  • Accepted : 2012.07.17
  • Published : 2012.08.25

Abstract

Epoxy nanocomposite was synthesized through the exfoliation of organoclay in an epoxy matrix, which was composed of diglycidyl ether of bisphenol A (DGEBA), 4,4'-methylene dianiline (MDA) and malononitrile (MN). Organoclay was prepared by treating the montmorillonite with octadecyl trimethyl ammonium bromide (ODTMA). The exfoliation of the organoclay was estimated by wide angle X-ray diffraction (WAXD) analysis. In order to measure the cure rate of DGEBA/MDA (30 phr)/MN (5 phr)/organoclay (3 phr), differential scanning calorimetry (DSC) analysis was performed at various heating rates, and the data were interpreted by Kissinger equation. Thermal degradation kinetics of the epoxy nanocomposite were studied by thermogravimetric analysis (TGA), and the data were introduced to the Ozawa equation. The activation energy for cure reaction was 45.8 kJ/mol, and the activation energy for thermal degradation was 143 kJ/mol.

Keywords

References

  1. J. Y. Lee, M. J. Shim and S. W. Kim, Polym. Eng. Sci., 39, 1993 (1999) [DOI: 10.1002/pen.11592].
  2. T. Seckin, A. Gultek, M. G. Icduygu and Y. Onal, J. Appl. Polym. Sci., 84, 164 (2002) [DOI: 10.1002/app.10289].
  3. F. Lin, G. S. Bhatia and J. D. Ford, J. Appl. Polym. Sci., 49, 1901 (1993) [DOI: 10.1002/app.1993.070491105].
  4. J. Y. Lee and H. K. Lee, Mater. Chem. Phys., 85, 410 (2004) [DOI: http://dx.doi.org/10.1016/j.matchemphys.2004.01.032].
  5. D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI:10.1002/app.10166].
  6. L. Zhang, Y. Wang, Y. Wang, Y. Sui and D. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) [DOI: 10.1002/1097-4628(20001209)].
  7. K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler and J. Varlet, J. Polym. Sci.: Part B, 39, 1360 (2001) [DOI: 10.1002/polb.1108].
  8. J. J. Park, S. S. Kwon and J. Y. Lee, Trans. Electr. Electron. Mater. 12, 135 (2011) [DOI: http://dx.doi.org/10.4313/TEEM.2011.12.4.135].
  9. T. Imai, F.Sawa, T.Ozaki, T.Shimizu, R. Kido, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul., 13, 445 (2006) [DOI:10.1109/TDEI.2006.1624291].
  10. C. Zou, J.C. Fothergill and S. W. Rowe, IEEE Trans. Dielectr. Electr. Insul., 15, 106 (2008) [DOI: 10.1109/T-DEI.2008.4446741].
  11. L. Tsou, J. A. Sauer and M. Hara, J. Polym. Sci.: Part B, 38, 1369 (2000) [DOI: 10.1002/(SICI)1099-0488(20000515)].
  12. J. Y. Lee, M. J. Shim and S. W. Kim, J. Korean Ind. & Eng. Chem., 5, 90 (1994).
  13. R. B. Prime, Thermal Characterization of Polymeric Materials, E. A. Turi (ed.), Academic Press, New York (1982)
  14. T. Ozawa, Polymer 12, 150 (1971) [DOI: http://dx.doi.org/10.1016/ 0032-3861(71)90041-3].

Cited by

  1. Effect of Nanoclay on the Mechanical, Thermal, and Water Absorption Properties of an UP-toughened Epoxy Network vol.92, pp.10, 2016, https://doi.org/10.1080/00218464.2015.1047828
  2. Cure Kinetics of Cycloaliphatic Epoxy/Silica System for Electrical Insulation Materials in Outdoor Applications vol.16, pp.2, 2015, https://doi.org/10.4313/TEEM.2015.16.2.74
  3. The Thermal Properties Analysis of the Mixtures Composed with Epoxy Resin and Amine Curing Agent vol.15, pp.3, 2014, https://doi.org/10.17702/jai.2014.15.3.100
  4. Thermal degradation kinetics of a commercial epoxy resin-Comparative analysis of parameter estimation methods vol.132, pp.27, 2015, https://doi.org/10.1002/app.42201
  5. Studies on thermal degradation and flame retardant behavior of the sisal fiber reinforced unsaturated polyester toughened epoxy nanocomposites vol.132, pp.24, 2015, https://doi.org/10.1002/app.42068
  6. Comparative Study of Kinetics of the Thermal Decomposition of Polypropylene Using Different Methods 2016, https://doi.org/10.1002/adv.21776