
2012년 2월 한국인터넷방송통신학회 논문지 제12권 제1호

- 123 -

http://dx.doi.org/10.7236/JIWIT.2012.12.1.123

JIWIT 2012-1-16

목적 지향 콘콜릭 테스팅을 이용한 플래그 변수가 있는

프로그램에 대한 테스트 데이터 생성

Generating Test Data for Programs with Flag Variables using

Goal-oriented Concolic Testing

정인상

Insang Chung

요 약 이 논문은 콘콜릭 테스팅을 특화한 목적 지향 테스트 데이터 생성 방법을 제안한다. GCT(Goal-oriented

Concolic Testing)라 불리는 제안된한 특정 목표를 실행하는 테스트 입력을 생성한다. 콘콜릭 테스팅은 요구되는 테
스트 입력을 발견할 때 까지 모든 가능한 경로 공간을 탐색하는 브루트 포스 방식으로 간주할 수 있다. 대조적으로
GCT는 자료 흐름 정보를 활용하여 목표가 실행되기 위해 먼저 수행되어야 하는 문장들을 식별하여 탐색되는 프로
그램 경로의 수를 제한한다. 플래그 변수가 있는 실험을 통해 GCT의 효과성을 보인다.

Abstract This paper presents a goal-oriented test data generation technique that specializes concolic testing.
The proposed technique, referred to as GCT (Goal-oriented Concolic Testing) produces test inputs which
execute a specific target. Concolic testing can be seen as the brute force approach to search the space of all
possible paths until a required test input is found. In contrast, GCT restricts the number of program paths that
are explored by using data flow information to identify statements that should be executed beforehand in order
for the target to be executed. We conducted experiments to evaluate the performance of GCT with programs
with flag variables to show its effectiveness.

Key Words : 목적 지향 테스팅, 콘콜릭 테스팅, 플래그 문제

*정회원, 한성대학교 컴퓨터공학과
접수일자 2011.11.7, 수정완료 2011.12.20.
게재확정일자 2012.2.10

Received: 7 November 2011 / Revised: 20 December 2011 /
Accepted: 10 February 2012
*Corresponding Author: insang@hansung.ac.kr
Dept. of Computer Engineering, Hansung University, Seoul, Korea

Ⅰ. Introduction

Concolic testin[1,2] is receiving attention because of

its ability to explore the path space exhaustively to

achieve full path coverage. It combines symbolic and

concrete execution to generate test data to explore all

feasible execution paths. A concrete execution is

performed on a program with random inputs and the

path constraints are then collected along the executed

path. These constraints are systematically negated to

generate new test inputs that drive the program along

alternative paths.

However, concolic testing can be ineffective when

testing a particular targeted section of a program. For

example, consider one key regression testing activity,

referred to as test suite augmentation to test whether

목적 지향 콘콜릭 테스팅을 이용한 플래그 변수가 있는 프로그램에 대한 테스트 데이터 생성

- 124 -

or not modifications are made as intended[3]. Test suite

augmentation refers to the process that creates

additional test data required to test new or modified

program behaviors that are not addressed by existing

test suites. It is efficient to generate test data that

exercise only changed or affected portions of a program

rather than all program components.

Static analysis techniques can be used in conjunction

with program testing to determine if warnings reported

by static analysis toolsreally exist in the actual

program. If program testing is performed on only

program locations relevant to reported errors, then the

total time to detect errors can be dramatically

decreased[4].

This paper presents a goal-oriented approach for

automated test data generation based on concolic

testing, referred to as GCT (Goal-oriented Concolic

Testing) that generates test inputs which execute a

specific target. From the viewpoint of goal-oriented

testing, concolic testing can be seen as the brute force

approach to search the space of all possible feasible

paths until a required test input is found. Even though

searching the path space exhaustively enables all

statements vital to reaching the target to be executed,

the execution of statements not required to reach the

target can be performed needlessly. This can make

testing intractable when the search space is large. This

paper revises the GCT procedure in[5] and adds some

experimental results.

GCT is applied to programs with flag variables to

show its effectiveness for test data generation. Most of

the goal-oriented techniques rely on a distance function

to discriminate between candidate test inputs in terms

of the cost required to achieve the test goal. However,

the distance function becomes a near constant function

that returns a constant value for a wide range of inputs

when Boolean-valued (flag) variables are used in

branch predicates. Thus, it is very difficult to direct the

search of the required test data for those programs

with flag variables[6][7].

Many automated test data generation techniques

involve solving a system of equations to generate test

data. Solving a system of equations is in general

undecidable. As a consequence, most of test data

generation techniques place a certain termination

condition including a maximum number of iterations in

order not to end up in an infinite loop. In this paper, we

show that the GCT procedure performs only a few

iterations even when infeasible targets are encountered.

This is of great benefit to saving the cost of testing

because it is impossible to know whether a given

target is infeasible in advance.

The paper isorganized as follows. Section 2 gives a

brief description about concolic testing. Section 3 gives

the GCT procedure with some basic definitions. Section

4 gives experimental results to show that the GCT

approach is promising for a certain class of programs

and is also efficient even when encountering infeasible

targets. Section 5 gives related works and Section 6

gives the conclusion and future works.

Ⅱ. Concolic Testing

Concolic testing is a dynamic symbolic execution

where the program under test P is executed both on

concrete and symbolic values, generating symbolic path

constraints Φπ along the path π. In certain cases, Φπ is

simplified using the corresponding concrete values. In

addition to Φπ, concolic testing maps program variables

to symbolic expressions using the symbolic memory

map S. Initially each input parameter xi is assigned a

fresh symbolic value δi. That is, S[xi]=δi. The mapping

of a program variable, say t, is updated to the symbolic

expression (e) at every assignment statement of the

form ‘t=e’ where by evaluating e in the current

symbolic memory map.

Φπ is initially assigned the Boolean value True. Φπ is

updated whenever a conditional statement of the form

‘if c then … else …’ is encountered during the symbolic

execution along π using the symbolic memory map. Of

course, if the concrete execution takes the then branch,

2012년 2월 한국인터넷방송통신학회 논문지 제12권 제1호

- 125 -

void foo(int a[], int b[], int k)

01:i=0;
02:fa=0;
03 fb=0;
04:while (i<10) {
05: if (a[i]==k)
06: fa=1;
07: i=i+1;
}
08:if (fa==1){
09: fb=1;
10: i=0;
11: while (i<10) {
12: if (b[i] !=k)
13: fb=0
14: i=i+1;
}

15:if (fb==1)
16: /* Target */

17: else

the symbolic expression ϐ(e) is conjoined with the
current symbolic path constraint Φπ as follows: ‘Φπ← Φ

π∧ϐ(c)’. Similarly, if the else branch is taken, Φπ is

changed to ‘Φπ∧not ϐ(c)’.At the end of the concolic
execution, the last constituent of Φπ is selected and

negated to produce a new symbolic path constraint Φπ°

when the depth first search strategy is used. A new

test input satisfying Φπ° directs the program along a

different execution path. This process is repeated until

all feasible execution paths have been explored. Indeed,

concolic testing explores program state space

exhaustively, and may even require great effort when

a test input is only required to reach a particular

program point. The situation can get worse if there are

a huge number of program paths to be explored before

reaching the target point.

Ⅲ. Goal-oriented concolic testing

1. Preliminary

An execution path is a sequence <s1, s2,…, sn> of

program statements executed on a certain input. A

branch is defined as a pair consisting of a conditional

statement and a statement immediately following the

conditional statement. For each branch bi, paired(bi)

denotes the paired branch, i.e., the alternative branch of

bi . For each conditional statement ck, bi is executed

when ck evaluates to true (or false) iff paired(bi) is

executed when ck evaluates to false (or true).

Executions of a program are represented using a

computational tree. Each node of the computational

tree corresponds to an execution of a conditional

statement while each edge corresponds to a sequence

of non-conditional statements executed between two

successive conditional statements. Fig. 2 shows the

partial computational trees of the program in Fig. 1,

which is adapted from Ferguson and Korel[8]. We call

a branch bi a guiding branch with respect to an

execution path and a target point t if for bi, bi exists

on and there exists a path leading to t through

paired(bi). In other words, a guiding branch is a

candidate branch leading to a target by negating it.

GBt(π) denotes the set of the guiding branches for the

execution path . For example, consider the program

path of Fig. 2(a) that is indicated by the shadowed area

and let the path be π. Then, GBtarget(π) is the set of the

branches executed when each predicate of the set

{a[i]!=5 for 0≤i≤9, fa!=1, fb!=1} evaluates to true.

그림 1. 예제 프로그램과 제어 흐름 그래프
Fig. 1. An example program and the corresponding

control flow graph

Now we introduce some basic notions about

dataflow between program statements. D(si) denotes a

set of program variables defined at statement si and

U(si) a set of program variables used or referenced at

si. For a branch bi, ∆bi denotes a set of statements that

can be executed if bi is executed. More formally, ∆bi

includes the statements dominated by bi
[9]. We say that

statement si affects statement sj iff there exists a path

<s1, s2,…, sn> such that for some v, v∊ D(si)∩U(sj)
and for all k, i≤k≤j, v∉D(sk).

목적 지향 콘콜릭 테스팅을 이용한 플래그 변수가 있는 프로그램에 대한 테스트 데이터 생성

- 126 -

(a) (c)

(b) (d)

그림 2. GCT에 의해 생성된 계산 트리
Fig. 2. Computational trees produced during GCT

2012년 2월 한국인터넷방송통신학회 논문지 제12권 제1호

- 127 -

ProcedureGCT(Program P, Target t) /* Let a randomly generated input be I

and π be the path of the program P executed on I. */

1: if the execution hits the target

 then found=true else found=false

 end if /* Iis the required test data */

2: if (GBπ(t) ≠∅)

 then pick a branch bt from GBπ(t) E=MakePC(π,bt)

 else termin_cond=true

 end if

3: while not (found or termin_cond)) do

4: if (there exists a satisfying assignment I for E) then

5: run P with I and let π° be the path executed on I

6: if (π° hits the target t) then found=true

 /* I is the required test data */

7: else if (π==π°) then /* the same path is executed again */

/* Let w(bt) be the set of statements affecting the branch predicate of bt and

b be a guiding branch before w(bt) on where paired(b) has not yet been

executed */

8: if b∊ GB(t) such that (∆(paired(b))∩w(bt)≠∅ or

 (∆b∩w(bt)≠∅)

 then

9: E=MakePC(π , b)

10: bt = b

11: else termin_cond=true;

12: end if

13: else

14: if (GB(t)≠∅) then

15: pick a branch bt from GB(t);

16: E=MakePC(,bt)

17: π =π°

18: else termin_cond=true;

19: end if

20: end if

21: else termin_cond=true;

22: end if

23: end while

24: if found then print I; /* I is a required test data */

25: else print "Not Found"

end procedure

PC MakePC(Path π, Branch b) /* PC: Path Constraint *//* Let Φl be the

symbolic constraint just before executing b and Φt be the constraint generated

by b with respect to the path π */

return E⟵(∧φ∈ΦlΦ)∧not Φt

end MakePC

2. GCT Procedure

Fig. 3 shows the GCT procedure. The GCT

procedure starts running the program on a randomly

generated input. If the target is hit luckily, the

procedure is over (line 1). When the target is not

executed, the procedure seeks an alternative path to

direct the search towards the target by selecting a

guiding branch along the execution path is selected

(line 2). The prefix of the alternative path is identified

by conjoining the symbolic constraint just before

executing the guiding branch with the constraint

generated by its paired branch of the guiding branch.

This is done by the MakePC procedure. The loop (line

3-line 23) runs until the target is traversed or no

guiding branches to be investigated exist.

그림 3. GCT 프로시듀어
Fig. 3. The GCT Procedure

If solutions satisfying the resultant constraint are

supplied as inputs, the new execution will follow the

previous execution up to the selected guiding branch,

but then take the paired branch of the guiding branch.

This ensures that the new execution will take the other

branch of the one taken by the previous execution. For

a selection criterion of guiding branches, we select a

branch with the minimum distance to the target in

terms of the branches between each guiding branch

and the target.

The code fragment (line 7-line 12)addresses the flag

variable problem. The flag variable problem arises

when Boolean-valued variables are used in branch

predicates and then makes it difficult to direct the

search of the target[6][7]. It is notnecessarily restricted to

flag variables. The same problem arises if branch

predicates use internal variables which are not

represented in terms of input variables. Such branch

predicates will not produce any symbolic constraints.

Consequently, the execution path taken by the new

execution will be the same as the one taken by the

previous execution.

In cases where the new execution follows the

previous execution (line 7), we seek a path that is

different from previously executed path by selecting a

new guiding branch, say b, such that execution of the

paired branch of b i.e., paired(b), forces the statements

목적 지향 콘콜릭 테스팅을 이용한 플래그 변수가 있는 프로그램에 대한 테스트 데이터 생성

- 128 -

affecting the previously selected branch, say bt, to be

executed. The condition ‘(∆(paired(b))∩(bt)≠∅’ at

line 8 allows us to identify such a guiding branch.

Alternatively, if certain statements affecting bt have

been already executed through theguiding branch b

(the condition ‘(∆b∩w(bt)≠∅’ at line 8), then we

mask their influence on bt by executing the paired

branch of b. If the new execution path is different from

the previous path, then we select a new guiding branch

with respect to the new path with the hope of

traversing the target in the next iteration (line 14-line

19).

3. An example

We now revisit the C program and its flow graph

shown in Fig. 1 along with their associated derived

computational trees shown in Fig. 2 to illustrate the

GCT strategy. Suppose that the target is the branch

(15, 16). In order to execute the target, at least one of

the elements of array a must be a constant ‘k’ while all

elements of array b equal the value of ‘k’.

Assuming that the initial execution is on inputs, 0≤i

≤9, a[i]=0, b[i]=0,k=5 the target is not executed, but its

paired branch (15, 17) is executed (Fig. 2(a)). This

execution passes through the conditional statement at

line 5 ten times, yielding the constraints E=(a[0]≠5)∧

(a[1]≠5)∧…∧(a[9]≠5). Note that the constraints

generated by the branches (8, 15) and (15, 17), i.e., (fa

≠1)∧(fb≠1) are not appended to E because both the

variables ‘fa’ and ‘fb’ are internal variables which are

not represented in terms of input variables.

The branch (15, 17) is chosen as the guiding branch

because it has the minimum distance to the target, i.e.,

paired((15,17))=(15,16)=target. The search negates the

guiding branch (15, 17) to force execution through the

branch (15, 16) by solving E, undoubtedly yielding test

inputs which follow the initial execution because the

constraint (fa==1) generated by negating the guiding

branch (15, 17) leaves E unchanged.

The GCT procedure checks what statements affect

the branch predicate, i.e., fb==1. The assignment at line

13 affects the branch predicate and thus the branch (8,

9) is selected for the next execution. However, negating

the guiding branch (8, 15) also leaves the symbolic

constraints E intact, thus yielding the previous

execution path.

We are now in a position to identify and execute the

statements affecting the branch predicate, i.e., fa==1.

The assignment at line 6, i.e., 'fa=1' affects the branch

predicate and then the execution is forced through the

branch (5, 6) by solving the constraint (a[0]≠5)∧(a[1]

≠5)∧…∧(a[8]≠5)∧(a[9]=5), perhaps yielding a[0]=0,

a[1]=0, …, a[8]=0, a[9]=5. These inputs give execution

which reaches the branch (5, 6), yielding the execution

path depicted in Fig. 2(b). Although the new execution

path does not traversethe target, it allows us to pick up

the branch ‘b[9]!=5’ as the guiding branch and to

negate it, leading to the new constraints E=(a[0]≠5)∧

(a[1]≠5)∧…∧(a[9]=5)∧(b[0]≠5)∧(b[1]≠5)∧…∧

(b[9]=5). This process is repeated until all elements of

the array b equal to 5, givingthe desired test inputs

(Fig. 2(c) and Fig. 2(d)). Note that a branch can come

up with several instances during execution due to

loops. When we are required to choose between branch

instances, the last instance is firstly taken into account

in this paper. Of course, you can pick it randomly. This

paper does not address what branch instances produce

best results.

Ⅳ. Experimental results

GCT has been implemented in CREST[2] which is

open source software for generating test data for C

with concolic testing. In order to extract data flow

information from source code, we have also extended

CIL which CREST uses to perform the code

instrumentation for symbolic execution. We have

conducted the experiments on a Linux machine with a

2.8 GHz Pentium 4 processor.

2012년 2월 한국인터넷방송통신학회 논문지 제12권 제1호

- 129 -

(a) foo1 (c) foo3

(b) foo2 (d) foo4

그림 4. 실험 결과
Fig. 4. Experimental results

We used CREST to evaluate concolic testing on

several programs from the literature
[6][7]. These

programs introduce particular technical difficulties for

tackling the flag variable problem even though they are

relatively small programs. CREST was able to generate

required test inputs for all programs used in the

experimental study in less than one hundred

milliseconds. In addition, the time required to search

targets is nearly identical for both CREST and GCT.

The results show that concolic testing can be

successfully applicable to test data generation for

programs with flag variables.

We took a closer look at programs included in the

experiments. Most of these programs require that all of

input values be the same so that flag variables will

yield desired values, i.e., all array elements are set to

a special value. Meeting this requirement necessitates

exhaustively exploring the entire path space preceding

the target. To explore this issue, we have conducted

further experiments on four versions of the foo function

in Fig. 1. Targeting the assignment at line 16 requires

the following test inputs:

foo1: The foo function is modified so that, when

all of the array values of a and b are five, the

target is executed.

foo2: The foo function is modified so that, when

목적 지향 콘콜릭 테스팅을 이용한 플래그 변수가 있는 프로그램에 대한 테스트 데이터 생성

- 130 -

void infeasible(char c[], char s[]){
01: state = 0;
02: if(c[0] == 'A')
03: if(state == 0) state = 1;
04: else printf("state:!0\n"); //target
05: if(c[1] == 'B')
06: if(state == 1) state = 2;
07: else printf("state:!1\n");
08: if(c[2] == 'C')
09: if(state == 2) state = 3;
10: else printf("state:!2\n");
11: if(c[3] == 'D')
12: if(state == 3) state = 4;
13: else printf("state:!3\n");
14: if(c[4] == 'E')
15: if(state == 4) state = 5;
16: else printf("state:!4\n");
17: if(c[5] == 'F')
18: if(state == 5) state = 6;
19: else printf("state:!5\n");
20: if(c[6] == 'G')
21: if(state == 6) state = 7;
22: else printf("state:!6\n");
23: if(c[7] == 'H')
24: if(state == 7) state = 8;
25: else printf("state:!7\n");
26: if(c[8] == 'I')
27: if(state == 8) state = 9;
28: else printf("state:!8\n");

 29: if (s[0] == 'r' && s[1] == 'e' &&
 s[2] == 's' && s[3] == 'e' &&
 s[4] == 't' && s[5] == '!' && state==9)
 30: printf("ERROR!");
}

all of the array values of a are five, and at least

one of the array values of b is five, the target is

executed.

foo3: It is the same as foo where the target is

executed on at least one of the array values of

a is five and all of the array values of b are five.

foo4: The foo function is modified so that when,

for each of the arrays a and b, at least one of the

array values is five, the target is executed.

The comparison result of CREST with GCT for

those programs is plotted in Fig. 4. The x-axis gives

the array size and the y-axis gives the search time

elapsed by CREST and GCT to find the target. The

two plots in Fig. 4(a) almost overlap, indicating no

difference between CREST and GCT. In contrast, the

plots in Fig. 4(c) show a significant difference in the

search time. This can be illustrated by the size of path

space that must be explored before the target is

reached. The foo1 function requires that all array

elements including both a and b should be set to five.

In order to generate such test inputs, GCT has to

explore all execution paths caused by the conditional,

i.e., ‘if (a[0]==5) …’, ‘if (a[1]==5)’,…, ‘if (a[k]==5)…’ for

the array size k, as CREST does. Similarly, the plots

given in Fig. 4(b) can be illustrated even though

CREST continues to explore the other paths instead of

stopping even after the target is executed.

In case of the foo3 function, however, GCT explores

just one path out of those execution paths which sets

a[i] to five to reach the target. In general, only a small

fraction, 1/2
k, of the path space explored by CREST is

required by GCT when the array size of a is k. The

search time increases as the size of the array b

increases because both GCT and CREST require that

all of the array values of b should be set to five.

The differences between GCT and CREST are

manifest in Fig. 4(d) where for the foo4 function, the

search time taken by GCT is almost a constant value

even though the array size increases. In this case, GCT

does notdepend on the number of execution paths prior

to the target. GCT needs to explore just one execution

path setting one array value of a and one array value

of b to set to five whereas CREST explores all possible

execution paths. The size ratio of the search spaces to

be explored by GCT and CREST is 1/2m+n when the

array size of a is m and the array size of b is n.

In addition, it is worth observing how GCT and

CREST work when a target point is infeasible. One

important goal of automated test data generation is not

to search test data needlessly when they could not be

found. We conducted another experiments to

demonstrate how GCT and CREST address an

infeasible target point with the program in Fig. 5.

그림 5. 실행 불가능한 목표를 지닌 예제 프로그램
Fig. 5. An example program with an infeasible

target

The comparison result of CREST with GCT for

those programs is plotted in Fig. 6 for the targets at

line 4, line 7, line 10, line 13, line 16, line 19, line 22, line

2012년 2월 한국인터넷방송통신학회 논문지 제12권 제1호

- 131 -

25, line 28, and line 30, respectively.

그림 6. 실행 불가능한 목표에 대한 실험 결과
Fig. 6. Experimental results for the infeasible

results

The x-axis gives the target points of the program

and the y-axis gives the search time elapsed by

CREST and GCT to find them. The plot for GCT is

almost constant indicating no difference between the

target locations. This means that GCT is almost

independent of where the targets are located. In

contrast, the plot for CREST shows a significant

difference in the search time depending on the locations

of the targets. As the target is located nearer at the

program beginning, the search time is abruptly

increased. This is strongly related to the way of how

CREST works. In the experiments, we consider the

DFS strategy that CREST employs as one of its search

strategies. As the name implies, the DFS strategy

searches firstly the deepest part of the search space

whenever possible. Thus, the ‘printf’ statement at line

30 is the first one explored because it is located at the

deepest part among the targets.

The most notable difference between GCT and

CREST in terms of the search time can be observed in

line 4. The ‘else’ branch’ at line 4 is infeasible because

the variable ‘state’is initialized with 0 at line 1 and is

not altered afterwards even though it needs to set to a

value other than zero to be executed. In this case,

CREST endlessly explores the search space unless

certain termination conditions are given. On the other

hand, GCT stops searching in finite iterations.

Assuming that the initial execution is on inputs such

that c[0] ‘A’. Then, the target, line 4, is not executed.

The search negates the guiding branch (2, 5) by setting

c[0] to ‘A’. However, the execution passes through the

branch (2, 3). Because the branch (2, 3) involves the

internal variable ‘state’, GCT procedure tries to find

what statements defines the variable ‘state’. GCT does

not explore the search further because only the

assignment at line 1 defines the variable and has been

already executed.

Ⅴ. Concluding remarks

The proposed GCT seeks the solution with far fewer

trials by restricting the number of program paths that

are explored. GCT uses data flow information to

identify statements that should be executed beforehand

in order for the target to be executed. We conducted

experiments to evaluate the performance of GCT.

Results demonstrate that GCT can be effective for

certain classes of programs. Unlike concolic testing,

GCT is directed in that its process for test data

generation is biased towards a particular goal. Further

work is needed to demonstrate that GCT will be

effective on large-scale programs.

References

[1] P. Godefroid, N. Klarlund, K. Sen, “DART:

Directed automated random testing”, Proceedings

of the ACM SIGPLAN 2005 Conference on

Programming Language Design and

Implementation, Chicago, Illinois, pp. 213-223,

2005.

[2] J. Burnim, K. Sen, “Heuristics for dynamic test

generation”, Proceedings of the 23rd IEEE/ACM

International Conference on Automated Software

Engineering , pp. 443-446, 2008.

[3] R. Santelices, P. K. Chittimalli, T. Apiwattanapong,

목적 지향 콘콜릭 테스팅을 이용한 플래그 변수가 있는 프로그램에 대한 테스트 데이터 생성

- 132 -

※ 본 연구는 한성대학교 교내연구장려금 지원과제임.

A. Orso, M. J. Harrold, “Test suite augmentation

for evolving software”, Proceedings of the 23rd

IEEE/ACM International Conference on Automated

Software Engineering, pp. 218-227, 2008.

[4] N. Rungta, E. G. Mercer, W. Visser “Efficient

testing of concurrent programs with abstraction

-guided symbolic execution”, Proceedings of

SPIN Workshop on Model Checking of Software,

Grenoble, France, pp. 218-227, 2009.

[5] I.S. Chung. J. Park, "Goal-oriented concolic

testing", Journal of KIISE: Software and

Applications, vol. 37, n. 10, pp. 768-772, 2010.

[6] L. Bottaci, “Instrumenting programs with flag

variables for test data search by genetic

algorithm”, Proceedings of the Genetic and

Evolutionary Computation Conference, pp.

1337-1342, 2002.

저자 소개

정 인 상(Insang Chung)(정회원)
∙1987년 서울 학교 컴퓨터공학과 졸

업(학사)

∙1989년 한국과학기술원(KAIST) 산

학과 졸업(석사)

∙1993년 한국과학기술원(KAIST) 산

학과 졸업(박사)

∙1999 ～ 재 : 한성 학교 컴퓨터공

학과 교수

< 심분야 : 소 트웨어 공학, 소 트웨어 테스 >

[7] P. McMinn, M. Holcombe, Evolutionary testing

using an extended chaining approach, Evolutionary

Computation, vol. 14, no. 1, pp. 41-64, 2006.

[8] R. Ferguson, B. Korel, The chaining approach to

software test data generation, ACM Transactions

on Software Engineering and Methodology, vol.

5, no. 1, pp. 63-86, 1996.

[9] S. Muchnick, N. Johnes, Program Flow Analysis,

Theory and Applications, Englewood Cliffs, NJ,

Prentice-Hall International, 1981.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

