DOI QR코드

DOI QR Code

FE Simulation of Axial Crushing Test for AZ31 Tube Considering Tension-Compression Asymmetry

압축-인장 비대칭을 고려한 AZ31 튜브의 압괴해석

  • Received : 2012.01.26
  • Accepted : 2012.06.19
  • Published : 2012.09.01

Abstract

With the increasing demand for lightweight materials to reduce fuel consumption, especially in the transportation industry, magnesium alloys are being widely studied. However, there are several limitations to the large-scale application of magnesium alloys in a structure because of their low formability and strong anisotropy. In order to take into account both the strong anisotropy and tension-compression asymmetry of AZ31 sheet alloy, the Cazacu-Plunkett-Barlat yield criterion (Cazacu, 2006) was adopted in material modeling. The variation of the anisotropic coefficients that describe the yield surface evolution of AZ31 is optimized using an interpolation function based on specific calibration results. It generates continuous yield surfaces, which makes it possible to describe different hardening rates in tension and compression as well as the tension-compression asymmetry of magnesium alloys. The performance of the CPB06 yield criterion for simulating an axial crushing test was tested and compared with that of the Hill (1948) yield criterion.

수송기기의 연비향상과 에너지 절감을 위하여 자동차 업계를 비롯한 각종 산업 전반에 마그네슘 합금의 적용이 확대되고 있는 추세이다. 조밀육방 격자 구조(HCP)를 갖는 마그네슘 합금의 경우, 낮은 성형성과 강한 소성 비대칭성 및 소성 이방성으로 인하여 실제 부품의 적용에 많은 제약조건이 수반되고 있다. 본 논문에서는 CPB06 항복함수를 이용하여 AZ31의 인장-압축 비대칭성을 모델링하고 이를 이용하여 AZ31 튜브의 압괴해석을 수행하고자 하였다.

Keywords

References

  1. Walde, T. and Riedel, H., 2007, "Simulation of Earing During Deep Drawing of Magnesium Alloy AZ31," Acta Mater., 55, pp. 867-874. https://doi.org/10.1016/j.actamat.2006.09.007
  2. Yi, S., Bohlen, J., Heinemann, F. and Letzig, D., 2010, "Mechanical Anisotropy and Deep Drawing Behaviour of AZ31 and ZE10 Magnesium Alloy Sheets," Acta Mater., 58, pp. 592-605. https://doi.org/10.1016/j.actamat.2009.09.038
  3. Levesque, J., Inal, K., Neale, K. W. and Mishra, R. K., 2010, "Numerical Modeling of Formability of Extruded Magnesium Alloy Tubes," Int. J. Plasticity, 26, pp. 65-83. https://doi.org/10.1016/j.ijplas.2009.05.001
  4. Li, M., Lou, X.Y., Kim, J. H. and Wagoner, R. H., 2010, "An Efficient Constitutive Model for Room- Temperature, Low-Rate Plasticity of Annealed Mg AZ31B Sheet," Int. J. Plasticity, 26, pp. 820-858. https://doi.org/10.1016/j.ijplas.2009.11.001
  5. Cazacu, O., Plunkett, B. and Barlat, F., 2006, "Orthotropic Yield Criterion for Hexagonal Close Packed Metals," Int. J. Plasticity, 22, pp. 1171-1194. https://doi.org/10.1016/j.ijplas.2005.06.001
  6. Erturk, S., Steglich, D., Bohlen, J., Letzig, D. and Brocks, W., 2009, "Thermo-Mechanical Modelling of Indirect Extrusion Process for Magnesium Alloys," Int. J. Mater. Form., 2 Suppl 1, pp. 49-52. https://doi.org/10.1007/s12289-009-0436-6
  7. Khan, A. S., Pandey, A., Gnäupel-Herold, T. and Mishra, R. K., 2011, "Mechanical Response and Texture Evolution of AZ31 Alloy at Large Strains for Different Strain Rates and Temperatures," Int. J. Plasticity, 27, pp. 688-706. https://doi.org/10.1016/j.ijplas.2010.08.009
  8. Hill, R., 1948, "A Theory of Yielding and Plastic Flow of Anisotropic Metals," Proc. Roy. Soc. London A 193, pp. 281-297. https://doi.org/10.1098/rspa.1948.0045