Enhanced Dissolution and Duodenal Permeation of Atorvastatin Calcium Using Bile Salt and 2-Hydroxypropyl-${\beta}$-Cyclodextrin

담즙산염과 2-히드록시프로필-${\beta}$-시클로덱스트린을 이용한 아토르바스타틴칼슘의 용출 및 십이지장 점막 투과 증진

  • Choi, Ji-Won (College of Pharmacy, Dongduk Women's University) ;
  • Chun, In-Koo (College of Pharmacy, Dongduk Women's University)
  • 최지원 (동덕여자대학교 약학대학) ;
  • 전인구 (동덕여자대학교 약학대학)
  • Received : 2012.05.10
  • Accepted : 2012.06.05
  • Published : 2012.06.30

Abstract

This study was aimed to increase the solubility, dissolution and permeation rates of atorvastatin calcium (ATC) using bile salt and/or 2-hydroxypropyl-${\beta}$-cyclodextrin ($HP{\beta}CD$). From solubility studies, sodium deoxycholate (SDC) among bile salts studied was found to have the highest solubilizing effect on ATC ($4.4{\pm}0.4$ mg/ml), and the order of increasing solubility was SDC>sod. cholate>sod. glycocholate>sod. taurodeoxycholate>sod. taurocholate>conjugated bile acid. ATC solid dispersions were prepared at various ratios of drug to SDC and/or $HP{\beta}CD$, and evaluated by differential scanning calorimetry (DSC), dissolution studies and dissolution-permeation studies. DSC curves showed amorphous state of ATC in the physical mixture and solid dispersion. Dissolution rates of ATC-SDC solid dispersions and physical mixture were markedly increased at pH 6.8, but decreased at pH 1.2 with greater proportions of SDC due to the precipitation of SDC, compared with that of drug alone. On the other hand, dissolution rates of ATC-$HP{\beta}CD$ solid dispersion and physical mixture at pH 1.2 were varied with the ratio of drug to carriers. From duodenal permeation studies, it was found that fluxes of ATC (donor dose: 0.5 mg/3.5 ml) in the presence of 25 mM sodium glycocholate, SDC, sod. cholate and sod. taurocholate $(5.7{\pm}0.9$, $5.6{\pm}0.9$, $4.8{\pm}0.7$ and $4.6{\pm}0.9\;{\mu}g/cm^2/hr$, respectively) were enhanced, compared with drug alone ($3.4{\pm}0.9\;{\mu}g/cm^2/hr$). In the dissolution-permeation studies, 1 : 9 : 10 (w/w) ATC-SDC-$HP{\beta}CD$ solid dispersion increased the flux 2.2 times, compared with 1 : 5 : 4 (w/w) ATC-lactose-corn starch mixture as control. In conclusion, solid dispersions with bile salt and $HP{\beta}CD$ were found to be an effective means for increasing the dissolution and permeation rates of ATC.

Keywords

References

  1. Law, M. R., Wald, N. J. and Rudnicka, A. R. : Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and metaanalysis. Br. Med. J. 326, 1423 (2003).
  2. Lau, Y. Y., Okochi, H., Huang, Y. and Benet, L. Z. : Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metabol. Dispos. 34, 1175 (2006).
  3. Physician's Desk Reference, 63 Edition, Lipitor Tablets, 2009, pp. 2501-2507.
  4. Lennernas H. and Fager, G. : Pharmacodynamics and pharmacokinetics of HMG-CoA reductase inhibitors: similarities and differences. Clin. Pharmacokinet. 32, 403 (1997).
  5. Shitara, Y. and Sugiyama, Y. : Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: Drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol. Ther. 112, 71 (2006).
  6. Kaufmann, P., Torok, M., Zahno, A., Waldhauser, K. M., Brecht, K. and Krahenbuhl, S. : Toxicity of statins on rat skeletal muscle mitochondria. Cell. Mol. Life Sci. 63, 2415 (2006).
  7. Wu, X., Whitfield, L. R. and Stewart, B. H. : Atorvastatin transport in the Caco-2 cell model: contributions of Pglycoprotein and the proton-monocarboxylic acid co-transporter. Pharm. Res. 17, 209 (2000).
  8. Michniewicz, B. M., Black, A. E., Sinz, M. W. and Woolf, T. F. : In vitro and in vivo metabolism of atorvastatin (CI-981). ISSX Proceeding, Volume 6, p. 93, Sixth North American ISSX Meeting, Raleinh, NC, Oct. 23-27 (1994).
  9. Sonje, V. M., Kumar, L., Puri, V., Kohli, G., Kaushal, A. M. and Bansal, A. K. : Effects of counterions on the properties of amorphous atorvastatin salts. Eur. J. Pharm. Sci. 44, 462 (2011).
  10. Skorda, D. and Kontoyannis, C. G. : Identification and quantitative determination of atorvastatin calcium polymorph in tablets using FT-Raman spectroscopy. Talanta 74, 1066 (2008).
  11. Shete, G., Puri, V., Kumar, L. and Bansal, A. K. : Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples. AAPS PharmSciTech. 11, 598 (2010).
  12. Laxminarayan, J. : Stabilized pharmaceutical compositions comprising an HMG-CoA reductase inhibitor. US Patent application, 2009; 2009/0247603.
  13. Kim, M. S., Jin, S. J., Kim, S. S., Park, H. J., Song, H. S., Neubert, R. H. H. and Hwang, S. J. : Preparation, characterization and in vivo evaulation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 69, 454 (2008).
  14. Kim, J. S., Kim, M. S., Park, H. J., Jin, S. J., Lee, S. and Hwang, S. J. : Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process. Int. J. Pharm. 359, 211 (2008).
  15. Anwar, M., Warsi, M. H., Mallick, N., Akhter, S., Gahoi, S., Jain, G. K., Talegaonkar, S., Ahmad, F. J. and Khar, R. K. : Enhanced bioavailability of nano-sized chotosan-atorvastatin conjugate after oral administration to rats. Eur. J. Pharm. Sci. 44, 241 (2011).
  16. Zhang, H. X., Wang, J. X., Zhang, Z. B., Le, Y., Shen, Z. G. and Chen, J. F. : Micronization of atorvastatin calcium by antisolvent precipitation process. Int. J. Pharm. 374, 106 (2009).
  17. Shen, H. and Zhong, M. : Preparation and evaluation of selfmicroemulsifying drug delivery system (SMEDDS) containing atorvastatin. J. Pharm. Pharmcol. 58, 1183 (2006).
  18. Kadu, P. J., Kushare, S. S., Thacker, D.D. and Gattani, S. G. : Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS). Pharm. Dev. Technol. 16, 65 (2011).
  19. Khan, F. N. and Dehghan, M. H. : Enhanced bioavailability and dissolution of atorvastatin calcium from floating microcapsules using minimum additives. Sci. Pharm. 80, 215 (2012).
  20. Chun, I. K. : Dissolution and duodenal permeation characetristics of lovastatin from bile salt solid dispersions. J. Kor. Pharm. Sci. 39, 97 (2009).
  21. Chun, I. K., Lee, K. M., Lee, K. E. and Gwak, H. S. : Effects of bile salts on the gastrointestinal absorption of pravastatin. J. Pharm. Sci. 101, 2281 (2012).
  22. Miyake, M., Minami, T., Toguchi, H., Odomi, M., Ogawara, K., Higaki, K. and Kimura, T. : Importance of bile acids for novel oral absorption system containing polyamines to improve intestinal absorption. J. Controlled Rel. 115, 130 (2006).
  23. Brewster, M. E. and Loftsson, T. : Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645 (2007).
  24. Matsuoka, K., Maeda, M. and Moroi, Y. : Micelle formation of sodium glyco- and taurocholates and sodium glyco- and taurodeoxycholates and solubilization of cholesterol into their micelles. Colloids Surf. B: Biointerfaces 32, 87 (2003).
  25. Matsuoka, K., Suzuki, M., Honda, C., Endo, K. and Moroi, Y. : Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species. Chem. Phys. Lipids 139, 1 (2006).
  26. Yoshida, N., Moroi, Y., Humphry-Baker, R. and Graetzel, M. : Dynamics for solubilization of naphthalene and pyrene into ndecyltrimethylammonium perfluorocarboxylate micelles. J. Phys. Chem. A 106, 3991 (2002).
  27. Sugioka, H. and Moroi, Y. : Micelle formation of sodium cholate and solubilization into the micelle. Biochim. Biophys. Acta 1394, 99 (1998).
  28. Reis, S., Moutinho, C. G., Matos, C., de Castro, B., Gameiro, P. and. Lima, J. J. F. C. : Noninvasive methods to determine the critical micelle concentration of some bile acid salts. Anal. Biochem. 334, 117 (2004).
  29. Subuddhi, U. and Mishra, A. K. : Micellization of bile salts in aqueous medium: a fluorescence study. Colloids Surf. B: Biointerfaces 57, 102 (2007).
  30. Lee, N. Y. and Chun, I. K. : Enhanced dissolution of simvastatin by solid dispersion with water-soluble carriers. Dongduk Pharm. Res. 12, 1 (2008).
  31. Palem, C. R., Patel, S. and Pokharkar, V. B. : Solubility and stability enhancement of atorvastatin by cyclodextrin complexation. PDA J. Pharm. Sci. Tech. 63, 217 (2009).
  32. Higuchi, T. and Connors, K.A. : Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117 (1965).
  33. Jun, S. W., Kim, M. S., Kim, J. S., Park, H. J., Lee, S., Woo, J. S. and Hwang, S. J. : Preparation and characterization of simvastatin/hydroxypropyl-$\beta$-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 66, 413 (2007).
  34. Ungaro, F., Giovino, C., Catanzano, O., Miro, A., Mele, A., Quaglia, F. and Rotonda, M. I. L. : Use of cyclodextrins as solubilizing agents for simvastatin: effects of hydroxypropyl-$\beta$- cyclodextrin on lactone/hydroxyacid aqueous equilibrium. Int. J. Pharm. 204, 49 (2011).
  35. Poelma, F. G. J., Breas, R. and Tukker, J. J. : Intestinal absorption of drugs. IV. the influence of taurocholate and Lcysteine on the barrier function of mucus. Int. J. Pharm. 64, 161 (1990).
  36. van Hasselt, P. M., Janssens, G. E. P. J., Slot, T. K., Van der Ham, M., Minderhoud, T. C., Talelli, M., Akkermans, L. M., Rijcken, C. J. F. and van Nostrum, C. F. : The influence of bile salts on the oral bioavailability of vitamin K encapsulated in polymeric micelles. J. Controlled Rel. 133, 161 (2009).