DOI QR코드

DOI QR Code

Antioxidant and Antigenotoxic Effects of Shiitake Mushrooms Affected by Different Drying Methods

건조 방법에 따른 표고버섯의 항산화능과 항유전독성 효과

  • Kim, Min-Jung (Dept. of Food and Nutrition, Kyungnam University) ;
  • Chu, Won-Mi (Dept. of Food and Nutrition, Kyungnam University) ;
  • Park, Eun-Ju (Dept. of Food and Nutrition, Kyungnam University)
  • 김민정 (경남대학교 식품영양학과) ;
  • 추원미 (경남대학교 식품영양학과) ;
  • 박은주 (경남대학교 식품영양학과)
  • Received : 2012.04.09
  • Accepted : 2012.05.08
  • Published : 2012.08.31

Abstract

Shiitake mushroom (SM; Lentinus edodes) are cultivated and consumed in many Asian countries including Vietnam, China, Japan, Korea, and Thailand. In Asia, SM are mainly dried and used as flavoring. The aim of this study was to compare the effects of SM created with different drying processes, such as oven-dried and sun-dried, on the antioxidative and antigenotoxic effects. Raw and dried SM were extracted with acetone, ethanol, methanol, and hot water. The antioxidant effects of SM were evaluated by determining total phenolic content, DPPH radical scavenging activity (RSA), an ORAC assay, and a cellular antioxidant capacity (CAC) assay. The inhibitory effect of SM on oxidative stress-induced DNA damage in human leukocytes was evaluated by a Comet assay. The total phenolic content of raw SM extracted with methanol and of that extracted with water were significantly higher than the dried SM. Among the water extracts, the $IC_{50}$ for DPPH RSA of raw and sun-dried SM were significantly higher than that of oven-dried SM. Sun-dried SM showed the most potent ORAC value at 50 g/mL. The CAC against $AAPH^-$ induced oxidative stress in HepG2 cells, and $H_2O_2$ induced DNA damage were effectively protected against by all SM extracts. These results suggest that unprocessed SM are the best antioxidants, and that the sun-dried method would be the best option to use in terms of antioxidant activity and the antigenotoxic effect.

생 표고버섯을 5 g씩 나누어 실험용 건조기와 일광을 이용하여 건조한 후 100 mL의 유기용매(acetone, ethanol, methanol)와 $90^{\circ}C$의 물 100 mL로써 추출하였다. 총 페놀함량을 측정하고 농축 또는 동결 건조하여 DMSO에 녹인 후 적당한 농도로 희석하여 DPPH 라디칼 소거능, ORAC value 및 CAC 등의 항산화 활성을 측정하였으며 comet assay를 이용하여 항 유전독성을 조사하였다. 그 결과, 아세톤과 에탄올 추출물에서 일광건조 한 표고버섯의 총 페놀 함량이 생 표고나 오븐건조 한 표고의 함량보다 유의적으로 높았으며 물 추출한 표고버섯 시료의 총 페놀이 유기용매로 추출한 시료보다 최소 2배 이상 월등히 높은 함량을 나타내었다. $IC_{50}$으로 나타낸 표고버섯의 DPPH 라디칼 소거능은 생 표고버섯이 모든 용매에서 유의적으로 가장 낮은 값을 나타내었으며, 특히 물 추출에서는 일광건조 시료가 생 표고와 거의 비슷한 활성을 보였다. AAPH로 유도된 peroxyl radical 소거능은 $50{\mu}g/mL$ 농도에서 오븐건조 한 표고버섯보다 생 표고나 일광건조 한 표고버섯이 더 뛰어남을 알 수 있었다. HepG2 cell을 이용하여 세포 내에서의 peroxyl radical에 대한 항산화 활성 검색에서는 시료의 최종농도를 $100{\mu}g/mL$로 처리했을 때 일광건조 한 표고버섯의 활성이 두드러지게 높은 활성을 보였으며 특히 메탄올과 물 추출 시료에서 각각 107.5%와 108.1%로 AAPH를 처리하지 않은 control과 비슷한 값을 나타내었다. 또한 comet assay에서는 표고버섯 추출물을 $50{\mu}g/mL$의 농도로 백혈구에 처리한 후 $H_2O_2$ $200{\mu}M$의 농도로 처리하여 DNA 손상을 유도한 결과 모든 표고 버섯 추출물이 $H_2O_2$만을 처리한 positive control에 비해 DNA 손상에 대한 보호 효과를 나타내었으며 특히 생 표고버섯의 항 유전독성 효과가 건조 표고버섯에 비해 뛰어났다. 총 페놀 함량과 항산화 활성 및 항 유전독성 활성 간에 상관관계는 나타나지 않았다. 이는 페놀 화합물 외에 표고버섯에 함유되어 있는 여러 가지 다른 생리활성 물질이 건조 조건에 따라 각각 다른 용매에 용출되어 작용한 것으로 사료되며 이에 대하여 앞으로 더욱 심도 있는 추가적인 연구가 수행되어야 할 것이다. 결론적으로 표고버섯을 식품으로 섭취 시 생 표고를 이용하며 장기간 보존을 위해 건조를 한다면 일광을 이용하는 것이 높은 페놀 함량과 항산화 활성을 기대할 수 있을 것이다.

Keywords

References

  1. Yim SB, Kim MO, Koo SJ. 1991. Determination of dietary fiber contents in mushrooms. Korean J Soc Food Sci 7: 69-76.
  2. Ishikawa Y, Morimoto K, Hamasaki T. 1984. Flavoglaucin, a metabolite of Eurotium chevalieri , its antioxidation and synergism with tocopherol. J Am Oil Chem Soc 61: 1864- 1868. https://doi.org/10.1007/BF02540819
  3. Kim GJ, Kim HS, Chung SY. 1992. Effects of varied mushroom on lipid compositions in dietary hypercholesterolemic rats. J Korean Soc Food Sci Nutr 21: 131-135.
  4. Kurashige S, Akuzawa Y, Endo F. 1997. Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and activities of macrophages and lymphocytes in mice treated with a carcinogen, N-butyl- N-butanolnitrosoamine. Immunopharmacol Immunotoxicol 19: 175-183. https://doi.org/10.3109/08923979709007657
  5. Kim BK, Shin GG, Jeong BS, Cha JY. 2001. Cholesterollowering effect of mushrooms power in hyperlipidemic rats. J Korean Soc Food Sci Nutr 30: 510-515.
  6. Sung JM, Yoo YB, Cha DR. 1998. Mushroom science. Kyohaksa, Seoul. Korea. p 64.
  7. Chang ST. 1999. World production of cultivated edible and medicinal mushrooms in 1997 with emphasis on Lentinus edodes (Berk.) Sing. in China. Int J Med Mushrooms 1: 291-300. https://doi.org/10.1615/IntJMedMushr.v1.i4.10
  8. Chang HW, Lee C. 2008. Medicinal mushrooms for good health. Munyeimadang, Seoul, Korea. p 25.
  9. Choi MY, Jung TY, Hahm KJ. 1995. Cytotoxic effects of hot water soluble polysaccharides from mushroom. Lentinus edodes and vitamin A & E supplementation against P388 cells. Kor J Nutr 28: 1091-1099.
  10. Chihara G, Maeda Y, Hamuro J, Sasaki T, Fukuoka F. 1969. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes (Berk.) Sing. Nature 222: 687-688. https://doi.org/10.1038/222687a0
  11. Halliwell B, Gutteridge JMC. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14. https://doi.org/10.1042/bj2190001
  12. Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA 90: 7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  13. Stapelfeldt H, Nielsen BR, Skibsted LH. 1997. Effect of heat treatment, water activity and storage temperature on the oxidative stability of whole milk powder. Int Dairy J 7: 331-339. https://doi.org/10.1016/S0958-6946(97)00016-2
  14. Li H, Choi YM, Lee JS, Park JS, Yeon KS, Han CS. 2007. Drying and antioxidant characteristics of Shiitake (Lentinus edodes) mushroom in conveyer-type far-infrared dryer. J Korean Soc Food Sci Nutr 36: 250-254. https://doi.org/10.3746/jkfn.2007.36.2.250
  15. Arslan D, Ozcan MM. 2011. Dehydration of red bell-pepper (Capsicum annuum L.): change in drying behavior, color and antioxidant content. Food Bioprod Process 89: 504- 513. https://doi.org/10.1016/j.fbp.2010.09.009
  16. Oboh G, Akindahunsi AA. 2004. Change in the ascorbic acid, total phenol and antioxidant activity of sun-dried commonly consumed green leafy vegetables in Nigeria. Nutr Health 18: 29-36. https://doi.org/10.1177/026010600401800103
  17. Yang J, Chen JF, Zhao YY, Mao LC. 2010. Effect of drying processes on the antioxidant properties in sweet potatoes. Agric Sci China 9: 1522-1529. https://doi.org/10.1016/S1671-2927(09)60246-7
  18. Seo JS, Kang SK, Choi BM. 1997. Drying characteristics and content change of major components of Shiitake mushroom (Lentinus edodes). Korean J Post-harvest Sci Technol Agric Products 4: 279-286.
  19. Folin O, Denis W. 1912. On phosphotungstic phosphomolybdic compounds as color reagents. J Biol Chem 12: 239- 249.
  20. Mensor LL, Menezes FS, Leitao GG, Reis AS, Santos TC, Coube CS, Leitao SG. 2001. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15: 127-130. https://doi.org/10.1002/ptr.687
  21. Kurihara H, Fukami H, Asami S, Totoda Y, Nakai M, Shibata H, Yao XS. 2004. Effects of oolong tea on plasma antioxdative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay. Biol Pharm Bull 27: 1093-1098. https://doi.org/10.1248/bpb.27.1093
  22. Lautraite S, Bigot-Lasserre D, Bars R, Carmichael N. 2003. Optimization of cell-based assays for medium through screening of oxidative stress. Toxicol 7: 207-220.
  23. Singh PN, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantification of low levels of DNA damage in individual cells. Exp Cell Res 175: 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  24. Springob J, Nakajima JI, Yamazaki M, Saito K. 2003. Recent advances in the biosynthesis and accumulation of anthocyanins. Nat Prod Rep 20: 288-303. https://doi.org/10.1039/b109542k
  25. Cheung LM, Cheung Peter CK, Ooi Vincent EC. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-255. https://doi.org/10.1016/S0308-8146(02)00419-3
  26. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compound of shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  27. Peleg H, Naim M, Rouseff RL, Zehavi U. 1991. Distribution of bound and free polyphenolic acids in oranges (Citrus sinensis) and grapefruit (Citrus paradisi). J Sci Food Agric 57: 417-426. https://doi.org/10.1002/jsfa.2740570312
  28. Shi J, Gong J, Liu J, Wu X, Zhang Y. 2009. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. J Food Sci Technol 42: 477-482.
  29. Wisanu T, Boonsom L, Saisunee L. 2009. Flow injection analysis of total curcuminoids in turmeric and antioxidant capacity using 2,2-diphenyl-1-picrylhydrazyl assay. Food Chem 112: 494-499. https://doi.org/10.1016/j.foodchem.2008.05.083
  30. Kang MY, Kim SY, Yun HJ, Nam SH. 2004. Antioxidant activity of extracts from browned oak mushroom (Lentinus edodes) with unmarketable quality. Kor J Food Sci Technol 36: 648-654.
  31. Siddhuraju P, Mohan PS, Becker K. 2002. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers, and fruit pulp. Food Chem 79: 61-67. https://doi.org/10.1016/S0308-8146(02)00179-6
  32. Perez-GĭAlves A, Hornero-Mendez D, Minguez-Mosquera MI. 2005. Dependence of carotenoid content and temperature- time regimes during the traditional slow drying of red pepper for paprika production at La Vera county. Eur Food Res Technol 221: 645-652. https://doi.org/10.1007/s00217-005-0074-2
  33. Ronald LP, Xianli W, Karen S. 2005. Standardized method for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53: 4290-4302. https://doi.org/10.1021/jf0502698
  34. Kim GN, Jung HM, Jang HD. 2008. Structure-activity relationship of citrus hydroxyflavanone glycosides and their aglycones against oxidative damage in HepG2 cells. J Clin Biochem Nutr 43: 508-511.
  35. Ostling O, Johanson KJ. 1984. Microgel electrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123: 291-298. https://doi.org/10.1016/0006-291X(84)90411-X
  36. Jin CF. 2004. Drying characteristics of oak mushroom using stationery far infrared dryer. MS Thesis. Chungbuk National University, Chungju, Korea.
  37. Holdsworth SD. 1971. Dehydration of food products. J Food Technol 6: 331-336.

Cited by

  1. Isoflavone, β-Glucan Content and Antioxidant Activity of Defatted Soybean Powder by Bioconversion with Lentinula edodes vol.31, pp.5, 2016, https://doi.org/10.13103/JFHS.2016.31.5.386
  2. Anti-diabetic and Anti-oxidative activities of Extracts from Crataegus pinnatifida vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.270
  3. Effects of Thermal Treatment and Freezing Storage Period on Physicochemical and Nutritional Characteristics of Shiitake Mushrooms vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.350
  4. Anti-Oxidative and Anti-Inflammatory Effects of Cheongajihwang-Tang Extract on RAW264.7 Cells vol.26, pp.3, 2016, https://doi.org/10.18325/jkmr.2016.26.3.51
  5. The Effects of Lentinula edodes and Aquilariae agallocha Extracts Combination on the Repair of UVA-Damaged DNA and DNCB-Induced Allergic Dermatitis vol.28, pp.5, 2015, https://doi.org/10.9799/ksfan.2015.28.5.759
  6. Effect of Pumpkin, Corn Silk, Adzuki Bean, and Their Mixture on Weight Control and Antioxidant Activities in High Fat Diet-Induced Obesity Rats vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1239
  7. Antioxidant Contents and Antioxidant Activities of Hot-Water Extracts of Aronia (Aronia melancocarpa) with Different Drying Methods vol.46, pp.3, 2014, https://doi.org/10.9721/KJFST.2014.46.3.303
  8. Quality Characteristics by Various Drying Methods in Ear Mushroom (Auricularia auricula-judae Quel.) vol.22, pp.6, 2014, https://doi.org/10.7783/KJMCS.2014.22.6.497
  9. Antimicrobial Effects on Food-Borne Pathogens and the Antioxidant Activity of Torreya Nucifera Extract vol.26, pp.4, 2015, https://doi.org/10.7856/kjcls.2015.26.4.697
  10. Effect of Extraction Methods on Antioxidant Activities of Mori ramulus vol.43, pp.11, 2014, https://doi.org/10.3746/jkfn.2014.43.11.1709
  11. Comparative Study on Anti-inflammatory Effects and Compound Contents of Multi-herbal Extracts HT008 produced by Different Manufacturing Methods vol.28, pp.4, 2013, https://doi.org/10.6116/kjh.2013.28.4.71
  12. Antioxidant Activities and Antimicrobial Effects of Solvent Extracts from Lentinus edodes vol.44, pp.8, 2015, https://doi.org/10.3746/jkfn.2015.44.8.1144
  13. Antimicrobial activities against oral bacteria and growth inhibition against Actinomyces viscosus using Lentinus edodes various extracts vol.15, pp.4, 2015, https://doi.org/10.13065/jksdh.2015.15.04.735
  14. 수확시기별 까마중 전초의 성분, 항산화활성 및 항염증 활성 vol.23, pp.6, 2012, https://doi.org/10.11002/kjfp.2016.23.6.866
  15. 참나무 수종별 톱밥재배에 따른 표고의 항산화 특성 vol.45, pp.2, 2017, https://doi.org/10.4489/kjm.20170015
  16. 수확시기에 따른 까마중 열매의 유용성분 및 생리활성 변화 vol.24, pp.6, 2012, https://doi.org/10.11002/kjfp.2017.24.6.849
  17. 스마트 팜 시스템으로 재배된 표고의 외형평가 및 항산화능 활성 vol.15, pp.4, 2012, https://doi.org/10.14480/jm.2017.15.4.206
  18. 추출온도에 따른 이팝나무 과육 물 추출물의 항산화 및 항노화 활성 vol.24, pp.8, 2017, https://doi.org/10.11002/kjfp.2017.24.8.1129
  19. 원목재배 표고버섯 물추출물의 항산화 특성 vol.46, pp.1, 2018, https://doi.org/10.4489/kjm.20180007
  20. 그라비올라 잎 추출물의 이화학적 특성 및 항산화 활성 vol.28, pp.5, 2012, https://doi.org/10.5352/jls.2018.28.5.540
  21. 느릅나무 초임계 추출박 60% 주정추출물의 생리활성 vol.8, pp.5, 2012, https://doi.org/10.22156/cs4smb.2018.8.5.029
  22. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms ( Pleurotus Ostreatus ) vol.9, pp.2, 2012, https://doi.org/10.3390/foods9020160
  23. Evaluation of the Physiological Activity of Lentinula edodes Extract by Extrusion vol.30, pp.1, 2020, https://doi.org/10.17495/easdl.2020.2.30.1.35
  24. 건조 방법에 따른 느타리버섯과 새송이버섯 열수추출물의 항산화 활성 vol.33, pp.1, 2012, https://doi.org/10.9799/ksfan.2020.33.1.064
  25. 비타민나무(Sea Buckthorn, Hippophae rhamnoides) 잎 에탄올 농도별 추출물의 항산화활성 비교 vol.53, pp.1, 2012, https://doi.org/10.9721/kjfst.2021.53.1.55
  26. Impact of post‐harvest processing or thermal dehydration on physiochemical, nutritional and sensory quality of shiitake mushrooms vol.20, pp.3, 2021, https://doi.org/10.1111/1541-4337.12738