References
- Joo, Y.-H.; Jeong, W. B.; Cho, S. K.; Goh, U. M.; Lim, Y.-G.; Moon, S.-S. Bull. Korean Chem. Soc. 2012, 33, 373. https://doi.org/10.5012/bkcs.2012.33.2.373
- Katrizky, A. R.; Sommen, G. L.; Gromova, A. V.; Witek, R. M.; Steel, P. J.; Damavarapu, R. Chem. Heterocycl. Comp. 2005, 41, 111. https://doi.org/10.1007/s10593-005-0116-5
- Latypov, N. V.; Bergman, J.; Langlet, A.; Wellmar, U.; Bemm, U. Tetrahedron 1998, 54, 11525. https://doi.org/10.1016/S0040-4020(98)00673-5
- Agrawal, J. P.; Hodgson, R. D. Organic Chemistry of Explosives; John Wiley & Sons: West Sussex, U. K., 2007; p 302.
- Aleksandrova, N. S.; Kharitonova, O. V.; Khmelnitskii, L. I.; Kulagina, V. O.; Melnikova, T. M.; Novikov, S. S.; Novikova, T. S.; Pivina, T. S.; Sheremetev, A. B. Mendeleev Commun. 1994, 230.
- Zhao, F.-Q.; Chen, P.; Hu, R.-Z.; Luo, Y.; Zhang, Z.-Z.; Zhou, Y.-S.; Yang, X.-W.; Gao, Y.; Gao, S.-L.; Shi, Q.-Z. J. Hazardous materials A 2004, 113, 67. https://doi.org/10.1016/j.jhazmat.2004.07.009
- Zhao, F.-Q.; Guo, P.-J.; Hu, R.-Z.; Zhang, H.; Xia, Z.-M.; Gao, H.-X.; Chen, P.; Luo, Y.; Zhang, Z. Z.; Zhuo, Y.-S.; Zhau, H.-A.; Gao, S.-L.; Shi, Q.-Z.; Lu, G.-E.; Jiang, J.-Y. Chin. J. Chem. 2006, 24, 631.
- Lim, C. H.; Kim, T. K.; Kim, K. H.; Chung, K.-H.; Kim, J. S. Bull. Korean Chem. Soc. 2010, 31, 1400. https://doi.org/10.5012/bkcs.2010.31.5.1400
- Kim, T. K.; Lee, B. W.; Chung, K.-H. Bull. Korean Chem. Soc. 2011, 32, 3802. https://doi.org/10.5012/bkcs.2011.32.10.3802
- Takasaki, M.; Motoyama, Y.; Higashi, K.; Yoon, S.-H.; Mochida, I.; Nagashima, H. Org. Lett. 2008, 10, 1601. https://doi.org/10.1021/ol800277a
- Kakshmi, M. L.; Chakravati, R.; Pal, U.; Screedhar, B.; Bhargava, S. Adv. Synth. Catal. 2008, 350, 822. https://doi.org/10.1002/adsc.200800018
- Figuras, F.; Coq, B. J. Mol. Catal. A: Chem. 2001, 173, 223. https://doi.org/10.1016/S1381-1169(01)00151-0
- Kantam, M. L.; Bandyopadhyay, T.; Rahman, A. J. Mol. Catal. A: Chem. 1998, 133, 293. https://doi.org/10.1016/S1381-1169(98)00137-X
- Rahman, A.; Jonnalagadda, S. B. Catal. Lett. 2008, 123, 264. https://doi.org/10.1007/s10562-008-9417-5
- Pogorelic, I.; Filipan-Litvic, M.; Merkas, S.; Ljubic, G.; Cepanec, I.; Litvic, M. J. Mol. Catal. A: Chem. 2007, 274, 202. https://doi.org/10.1016/j.molcata.2007.05.020
- Zeynizadeh, B.; Setamdideh, D. Synth. Commun. 2006, 36, 2699. https://doi.org/10.1080/00397910600764709
- Chary, K. P.; Ram, S. R.; Iyengar, D. S. Synlett. 2000, 683.
- Ren, P. D.; Pan, S. F.; Dong, T. W.; Wu, S. H. Synth. Commun. 1995, 25, 3799. https://doi.org/10.1080/00397919508011453
- Shi, Q.; Lu, R.; Lu, L.; Fu, X.; Zhao, D. Adv. Synth. Catal. 2007, 349, 1877. https://doi.org/10.1002/adsc.200700070
- Shi, Q.; Lu, R.; Jin, K.; Zhang, Z.; Zhao, D. Green Chem. 2006, 8, 868.
- Kumarraja, M.; Pitchumani, K. App. Catal. A: Gen. 2004, 265, 135. https://doi.org/10.1016/j.apcata.2004.01.009
- Vass, A.; Dudas, J.; Toth, J.; Varma, R. S. Tetrahedron Lett. 2001, 42, 5347. https://doi.org/10.1016/S0040-4039(01)01002-4
- Kumbhar, S. P.; Sanchez Valente, J.; Figueras, F. Tetrahedron Lett. 1998, 39, 2573. https://doi.org/10.1016/S0040-4039(98)00264-0
- Gamble, A. B.; Garner, J.; Gordon, C. P.; O'Conner, S. M. J.; Keller, P. A. Synth. Commun. 2007, 37, 2777. https://doi.org/10.1080/00397910701481195
- Liu, Y.; Lu, Y.; Prashad, M.; Repic, O.; Blacklock, T. J. Adv. Synth. Catal. 2005, 347, 217.
- Mahdavi, H.; Tamami, B. Synth. Commun. 2005, 35, 1121. https://doi.org/10.1081/SCC-200054221
- De, P. Synlett. 2004, 1835.
- Wang, L.; Li, P.; Wu, Z.; Yan, J.; Wang, M.; Ding, Y. Synthesis 2003, 2001.
- Khan, F. A.; Dash, J.; Sudheer, C.; Gupta, R. K. Tetrahedron Lett. 2003, 44, 7783. https://doi.org/10.1016/j.tetlet.2003.08.080
- Paton, R. M. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, U. K., 1996; Vol. 4, p 243.
- Sheremetev, A. B. J. Heterocyclic Chem. 1995, 32, 371. https://doi.org/10.1002/jhet.5570320201
- Balicki, R.; Cybulski, M.; Maciejewski, G. Synth. Commun. 2003, 33, 4137. https://doi.org/10.1081/SCC-120026355
- Howard, E., Jr.; William, F. O. J. Am. Chem. Soc. 1959, 81, 1483. https://doi.org/10.1021/ja01515a050
- Balicki, R.; Chmielowiec, U. Monatshefte fr Chemie 2000, 131, 1105. https://doi.org/10.1007/s007060070044
- Marc, O. T.; Richard, F. H. J. Org. Chem. 1980, 45, 4992. https://doi.org/10.1021/jo01312a039
- Zachrie, B.; Moreau, N.; Dockendorff, C. J. Org. Chem. 2001, 66, 5264. https://doi.org/10.1021/jo015649g
- Sheremetev, A. B.; Kulagina, V. O.; Kryazhevskikh, I. A.; Melnikova, T. M.; Aleksandrova, N. S. Russ. Chem. Bull. 2002, 51, 1533. https://doi.org/10.1023/A:1020931511013
- Sheremetev, A. B.; Andrianov, A. G.; Mantseva, E. V.; Shatunova, E. V.; Aleksandrova, N. S.; Yudin, I. L.; Dmitriev, D. E.; Averkiev, B. B.; Antipin, M. Yu. Russ. Chem. Bull. 2004, 53, 596. https://doi.org/10.1023/B:RUCB.0000035644.16331.f0
- Kim, C. K.; Cho, S. G.; Kim, C. K.; Park, H.-Y.; Zhang, H.; Lee, H. W. J. Comput. Chem. 2008, 29, 1818. https://doi.org/10.1002/jcc.20943
Cited by
- Synthesis and Characterization of Bisimidazolylfuroxan Derivatives vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1864
- 1,2-Di(4-R-furazan-3-yl)glyoximes: Synthesis by the Reduction of 3,4-Bis(4-R-furazan-3-yl)furoxans and Study of the Reactivity of these Compounds vol.49, pp.5, 2013, https://doi.org/10.1007/s10593-013-1309-y
- NMR spectroscopic study of 3-nitrofurazans vol.62, pp.2, 2013, https://doi.org/10.1007/s11172-013-0070-9
- Searching for Low-Sensitivity Cast-Melt High-Energy-Density Materials: Synthesis, Characterization, and Decomposition Kinetics of 3,4-Bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,5-oxadiazole-2-oxide vol.119, pp.7, 2015, https://doi.org/10.1021/jp5118008
- Small Cation-Based High-Performance Energetic Nitraminofurazanates vol.22, pp.33, 2016, https://doi.org/10.1002/chem.201602171
- Synthesis and some chemical characteristics of 4″-nitro-3,3′:4′,3″-ter-1,2,5-oxadiazol-4-amine vol.52, pp.8, 2016, https://doi.org/10.1134/S1070428016080170
- Comprehensive End-to-End Design of Novel High Energy Density Materials: I. Synthesis and Characterization of Oxadiazole Based Heterocycles vol.121, pp.43, 2017, https://doi.org/10.1021/acs.jpcc.7b07584
- Synthesis and characterization of multicyclic oxadiazoles and 1-hydroxytetrazoles as energetic materials vol.53, pp.6-7, 2017, https://doi.org/10.1007/s10593-017-2122-9
- Synthesis of Nitro, Dinitro, and Polynitroalkylamino Derivatives of Trifurazanoxide pp.0022152X, 2017, https://doi.org/10.1002/jhet.2920
- Hermetic thermal behaviors and specific heat capacities of bis(aminofurazano)furazan and bis(nitrofurazano)furazan vol.133, pp.3, 2018, https://doi.org/10.1007/s10973-018-7242-7
- Boosting energetic performance by trimerizing furoxan vol.6, pp.20, 2018, https://doi.org/10.1039/C8TA02274G
- -Oxides light up energetic performances: synthesis and characterization of dinitraminobisfuroxans and their salts vol.4, pp.23, 2016, https://doi.org/10.1039/C6TA03619H
- Reaction of 1,2,3-Oxadiazole 3-Oxides vol.86, pp.2, 2012, https://doi.org/10.3987/com-12-s(n)127
- Ionic Liquids as Unique Solvents in One‐Pot Synthesis of 4‐(N,2,2,2‐Tetranitroethylamino)‐3‐R‐Furazans vol.19, pp.37, 2012, https://doi.org/10.1002/chem.201302126
- Synthesis and Crystal Structure of Bis-3,3'-(nitro-NNO-azoxy)-4,4'-azofurazan vol.34, pp.2, 2012, https://doi.org/10.5012/bkcs.2013.34.2.686
- New Strategy for Enhancing Energetic Properties by Regulating Trifuroxan Configuration: 3,4-Bis(3-nitrofuroxan-4-yl)furoxan vol.9, pp.None, 2012, https://doi.org/10.1038/s41598-019-39723-z
- A comparative study of the structures, thermal stabilities and energetic performances of two energetic regioisomers: 3(4)-(4-aminofurazan-3-yl)-4(3)-(4-nitrofurazan-3-yl)furoxan vol.10, pp.53, 2012, https://doi.org/10.1039/d0ra06186g
- Application and Development of 3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF) vol.91, pp.3, 2012, https://doi.org/10.1134/s1070363221030142
- Nitrogen-rich tricyclic-based energetic materials vol.5, pp.19, 2012, https://doi.org/10.1039/d1qm00916h