DOI QR코드

DOI QR Code

A Comparison of Electrical Stimulation for Electrodic and EDTA-Enhanced Phytoremediation of Lead using Indian Mustard (Brassica juncea)

  • Lim, Jae-Min (Department of Chemistry, Changwon National University) ;
  • Jin, Biao (Instrumental Analysis Center, Yanbian University) ;
  • Butcher, David J. (Department of Chemistry and Physics, Western Carolina University)
  • Received : 2012.06.14
  • Accepted : 2012.06.18
  • Published : 2012.08.20

Abstract

The use of plants to remove toxic metals from soil (phytoremediation) is emerging as a cost-effective alternative to conventional methods for the removal of heavy metals from contaminated soil. Indian mustard (Brassica juncea) was used as the plant to accumulate high tissue concentrations of lead when grown in contaminated soil. For this study, the application of an electric field combined effectively with EDTA-enhanced phytoremediation. A stimulation of direct and alternating electric potential was compared and EDTA-enhanced phytoremediation of lead using Indian mustard has been performed. The effects of experimental parameters such as operating voltage with different concentration of EDTA, the number of graphite electrodes, and cultivation period on the removal of toxic metal were studied. Shoot lead accumulations in Indian mustard increased as the concentration of EDTA and dc electric potential was increased. Two to four folds was increased when EDTA plus a dc electric potential was applied, compared to an ac electric potential. The maximum lead accumulation in the shoots was achieved by applying EDTA plus dc electric potential with 6 graphite electrodes.

Keywords

References

  1. Raskin, I.; Ensley, B. D. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment; John Wiley: New York, 2000.
  2. Terry, N.; Banuelos, G. S. Phytoremediation of Contaminated Soil and Water; Lewis Publishers: Baca Raton, 2000.
  3. Ebbs, S. D.; Kochian, L. V. Environ. Sci. Technol. 1998, 32, 802. https://doi.org/10.1021/es970698p
  4. Sarret, G.; Vangronsveld, J.; Manceau, A.; Musso, M.; D'Haen, J.; Menthonnex, J.-J.; Hazenmann, J.-L. Environ. Sci. Technol. 2001, 35, 2854. https://doi.org/10.1021/es000219d
  5. Whiting, S. N.; Leake, J. R.; Mcgrath, S. P.; Baker, A. J. M. Environ. Sci. Technol. 2001, 35, 3237. https://doi.org/10.1021/es010644m
  6. McBride, M. B. Environmental Chemistry of Soils; Oxford University Press: New York, 1994.
  7. Huang, J. W.; Blaylock, M. J.; Kapulnik, Y.; Ensley, B. D. Environ. Sci. Technol. 1998, 32, 2004. https://doi.org/10.1021/es971027u
  8. Kumar, P. B. A. N.; Dushenkov, V.; Motto, H.; Raskin, I. Environ. Sci. Technol. 1995, 29, 1232. https://doi.org/10.1021/es00005a014
  9. Ebbs, S. D.; Lasat, M. M.; Brady, D. J.; Cornish, J.; Gordon, R.; Kochian, L. V. J. Environ. Qual. 1997, 26(5), 1424.
  10. Blaylock, M. J.; Salt, D. E.; Dushenkov, S.; Zakharova, O.; Gussman, C.; Kapulnik, Y. Environ. Sci. Technol. 1997, 31, 860. https://doi.org/10.1021/es960552a
  11. Salido, A. L.; Hasty, K. L.; Lim, J.-M.; Butcher, D. J. Int. J. Phytoremediat. 2003, 5, 89.
  12. Acar, Y. B.; Alshawabkeh, A. N. Environ. Sci. Technol. 1993, 27, 2638. https://doi.org/10.1021/es00049a002
  13. Alshawabkeh, A. N.; Yeung, A. T.; Bricka, M. R. J. Environ. Engineering 1999, 125, 27. https://doi.org/10.1061/(ASCE)0733-9372(1999)125:1(27)
  14. Alshawabkeh, A. N.; Gale, R. J.; Ozsu-Acar, E.; Bricka, R. M. J. Soil Contamination 1999, 8(6), 617. https://doi.org/10.1080/10588339991339504
  15. Lim, J.-M.; Salido, A. L.; Butcher, D. J. Microchem. J. 2004, 76, 3. https://doi.org/10.1016/j.microc.2003.10.002
  16. Embrick, L. L.; Porter, K. M.; Pendergrass, A.; Butcher, D. J. Microchem. J. 2005, 81, 117. https://doi.org/10.1016/j.microc.2005.01.007

Cited by

  1. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments vol.24, pp.5, 2017, https://doi.org/10.1007/s11356-016-8277-6
  2. Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus vol.25, pp.12, 2018, https://doi.org/10.1007/s11356-018-1427-2
  3. Effect of electrode configurations on phytoremediation efficiency and environmental risk vol.424, pp.1-2, 2018, https://doi.org/10.1007/s11104-018-3569-x
  4. to phytoremediate soil polluted by Cd, Pb, and Cu pp.1549-7879, 2019, https://doi.org/10.1080/15226514.2018.1501342
  5. Simultaneous uptake of arsenic and lead using Chinese brake ferns (Pteris vittata) with EDTA and electrodics vol.32, pp.1, 2012, https://doi.org/10.5806/ast.2019.32.1.1
  6. Removal of cadmium, lead, and zinc from multi-metal-contaminated soil using chelate-assisted Sedum alfredii Hance vol.26, pp.27, 2012, https://doi.org/10.1007/s11356-019-06041-w