DOI QR코드

DOI QR Code

Solubilization of Pyrimethamine, Antibacterial Drug, by Low-Molecular-Weight Succinoglycan Dimers Isolated from Shinorhizobium meliloti

  • Kim, Hwan-Hee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University) ;
  • Kim, Kyoung-Tea (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University) ;
  • Choi, Jae-Min (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University) ;
  • Tahir, Muhammad Nazir (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University) ;
  • Cho, Eun-Ae (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University) ;
  • Choi, Young-Jin (BioChip Research Center, Hoseo University) ;
  • Lee, Im-Soon (Department of Biological Sciences & Center for Biotechnology Research in UBITA, Konkuk University) ;
  • Jung, Seun-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center & Center for Biotechnology Research in UBITA, Konkuk University)
  • Received : 2012.05.17
  • Accepted : 2012.05.23
  • Published : 2012.08.20

Abstract

The use of pyrimethamine as antibacterial drug is limited by the poor solubility. To enhance its solubility, we prepared complexes of pyrimethamine with low-molecular-weight succinoglycan isolated from Sinorhizobium meliloti. Low-molecular-weight succinoglycans are monomers, dimers, and trimers of the succinoglycan repeating unit. The monomers and dimers were separated into their three species (M1, M2, and M3) and four fractions (D1 to D4) using chromatographic techniques, which were shown to be nontoxic. The solubility of pyrimethamine was markedly increased up to 42 fold by succinoglycan D3, where the level of its solubility enhancement was even 8-20 fold higher comparing with cyclodextrin or its derivatives. The complex formation of succinoglycan D3 with pyrimethamine was confirmed by $^1H$ nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and molecular modeling studies. Herein, we suggest that the low-molecular-weight succinoglycans may be utilized as highly effective solubilizers of pyrimethamine for pharmaceutical purposes.

Keywords

References

  1. Bosch-Driessen, L. H.; Verbraak, F. D.; Suttorp-Schulten, M. S.; van Ruyven, R. L.; Klok, A. M.; Hoyng, C. B; Rothova A. Am. J. Ophthalmol. 2002, 134, 34. https://doi.org/10.1016/S0002-9394(02)01537-4
  2. Anderson, A. C. Drug Discov. Today 2005, 10, 121. https://doi.org/10.1016/S1359-6446(04)03308-2
  3. Watkins, W. M.; Mberu, E. K.; Winstanley, P. A.; Plowe, C. V. Parasitol. Today 1997, 13, 459. https://doi.org/10.1016/S0169-4758(97)01124-1
  4. de Arajo, M. V.; Vieira, E. K.; Lzaro, G. S.; de Souza Conegero, L.; Ferreira, O. P.; Almeida, L. S.; Barreto, L. S.; da Costa, N. B., Jr.; Gimenez , I. F. Bioorg. Med. Chem. 2007, 15, 5752. https://doi.org/10.1016/j.bmc.2007.06.013
  5. Brewster, M. E.; Loftsson, T. Pharmazie 2002, 57, 94.
  6. Miller, L. A.; Carrier, R. L.; Ahmed, I. J. Pharm. Sci. 2007, 96, 1691. https://doi.org/10.1002/jps.20831
  7. Jansook, P.; Kurkov, S. V.; Loftsson, T. J. Pharm. Sci. 2010, 99, 719.
  8. Charman, S. A.; Perry, C. S.; Chiu, F. C.; Mclntosh, K. A.; Rrankerd, R. J.; Charman, W. N. J. Pharm. Sci. 2006. 95, 256. https://doi.org/10.1002/jps.20534
  9. de Araujo M. V.; Macedo, O. F.; Nascimento, C. C.; Conegero, L. S.; Barreto, L. S.; Almeida, L. E.; da Costa, N. B., Jr.; Gimenez, I. F. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2009, 72, 165. https://doi.org/10.1016/j.saa.2008.09.011
  10. Onyeji, C. O.; Omoruyi, S. I.; Oladimeji, F. A.; Soyinka, J. O. Afr. J. Biotechnol. 2009, 8, 1651.
  11. Gonzlez, J. E.; Semino, C. E.; Wang, L. X.; Castellano-torres, L. E.; Walker, G. C. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 13477. https://doi.org/10.1073/pnas.95.23.13477
  12. Wang, L. X.; Wang, Y.; Pellock, B.; Walker, G. C. J. Bacteriol. 1999, 181, 6788.
  13. Cho, E.; Choi, J. M.; Kim, H.; Lee, I.-S.; Jung, S. Bull. Korean Chem. Soc. 2011, 32, 4071. https://doi.org/10.5012/bkcs.2011.32.11.4071
  14. Åmen, P.; McNeil, M.; Franzn, L.-E.; Darvill, A. G.; Albersheim, P. Carbohydr. Res. 1981, 95, 263. https://doi.org/10.1016/S0008-6215(00)85582-2
  15. Kwon, C.; Lee, S.; Jung, S. Carbohydr. Res. 2011, 346, 2308. https://doi.org/10.1016/j.carres.2011.07.023
  16. Kwon, C.; Paik, S. R.; Jung, S. Electrophoresis 2008, 29, 4284. https://doi.org/10.1002/elps.200800127
  17. Choi, J. M.; Kim, H.; Cho, E.; Choi, Y.; Lee, I.-S.; Jung, S. Carbohydr. Polym. 2012, 89, 564. https://doi.org/10.1016/j.carbpol.2012.03.048
  18. Higuchi, T.; Connors, K. A. Adv. Anal. Chem. Instr. 1965, 4, 117.
  19. Loftsson, T.; Magnsdttir, A.; Msson, M.; Siqurjnsdttir, J. F. J. Pharm. Sci. 2002, 91, 2307. https://doi.org/10.1002/jps.10226
  20. Connors, K. A. Chem. Rev. 1997, 97, 1325. https://doi.org/10.1021/cr960371r
  21. Brewster, M. E.; Loftsson, T. Adv. Drug Deliv. Rev. 2007, 59, 645. https://doi.org/10.1016/j.addr.2007.05.012
  22. Valle, E. M. M. D. Process Biochem. 2004, 39, 1033. https://doi.org/10.1016/S0032-9592(03)00258-9
  23. Chavan, A. B.; Mali, K. K.; Dias, R. J.; Kate, L. D. Pharmacia. Lettre 2011, 3, 281.
  24. Gil, V. M. S.; Oliveira, N. C. J. Chem. Educ. 1990, 67, 473. https://doi.org/10.1021/ed067p473
  25. Hirose, K. J. Incl. Phenom. Macrocycl. Chem. 2001, 39, 193. https://doi.org/10.1023/A:1011117412693
  26. Fielding, L. Tetrahedron 2000, 56, 6151. https://doi.org/10.1016/S0040-4020(00)00492-0
  27. Park, H.; Choi, Y.; Kang, S.; Lee, S.; Kwon, C.; Jung, S. Carbohydr. Polym. 2006, 64, 85. https://doi.org/10.1016/j.carbpol.2005.10.027
  28. Kang, S.; Lee, S.; Kyung, S.; Jung, S. Bull. Korean. Chem. Soc. 2006, 27, 921. https://doi.org/10.5012/bkcs.2006.27.6.921
  29. Burova, T. V.; Golubeva, I. A.; Grinberg, N. V.; Mashkevich, A. Y.; Grinberg, V. Y.; Usov, A. I.; Navarini, L.; Cesro, A. Biopolym. 1996, 39, 517.
  30. Korb, O.; Sttzle, T.; Exner, T. E. J. Chem. Inf. Model. 2009, 49, 84. https://doi.org/10.1021/ci800298z

Cited by

  1. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012 vol.36, pp.3, 2015, https://doi.org/10.1002/mas.21471
  2. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity vol.22, pp.8, 2017, https://doi.org/10.3390/molecules22081311
  3. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs vol.20, pp.10, 2015, https://doi.org/10.3390/molecules201019620