DOI QR코드

DOI QR Code

A Theoretical Study on the Alkylation of the Ambident Enolate from a Methyl Glycinate Schiff Base

  • Received : 2012.03.14
  • Accepted : 2012.05.23
  • Published : 2012.08.20

Abstract

The alkylation of the ambident enolates of a methyl glycinate Schiff base with ethyl chloride was studied at B3LYP and MP2 levels with $6-31+G^*$ basis set. The free (E)-enolates and (Z)-enolate are similar in energy and geometry. The transition states for the alkylation of the free (E)/(Z)-enolate with ethyl chloride have similar energy barriers of ~13 kcal/mol. However, with a lithium ion, the (E)-enolate behaves as an ambident enolate and makes a cyclic lithium-complex in bidentate pattern which is more stable by 11-23 kcal/mol than the (Z)-enolate-lithium complexes. And the TS for the alkylation of (E)-enolate-lithium complex coordinated with one methyl ether is lower in energy than those from (Z)-enolate-lithium complexes by 4.3-7.3 kcal/mol. Further solvation model (SCRF-CPCM) and reaction coordinate (IRC) were studied. This theoretical study suggests that the alkylation of ambident enolates proceeds with stable cyclic bidentate complexes in the presence of metal ion and solvent.

Keywords

References

  1. Carey, F. A.; Sundberg. R. J. In Advanced Organic Chemistry: Part B, 4th ed.; Plenum: 2000; Chapter 1.
  2. Parker, A. J. Chem. Rev. 1969, 69, 1. https://doi.org/10.1021/cr60257a001
  3. Jackman, L. M.; Lange, B. C. Tetrahedron 1977, 33, 2737. https://doi.org/10.1016/0040-4020(77)80265-2
  4. Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624. https://doi.org/10.1002/anie.198816241
  5. Abu-Hasanayn, F.; Stratakis, M.; Streitwieser, A. J. Org. Chem. 1995, 60, 4688. https://doi.org/10.1021/jo00120a006
  6. Abbotto, A.; Streitwieser, A. J. Am. Chem. Soc. 1995, 117, 6358. https://doi.org/10.1021/ja00128a026
  7. O'Donnell, Acc. Chem. Res. 2004, 37, 506. https://doi.org/10.1021/ar0300625
  8. Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. Engl. 2007, 46, 4222. https://doi.org/10.1002/anie.200601737
  9. Jew, S.-S.; Park, H.-G. Chem. Commun. 2009, 7090.
  10. Ando, K. J. Am. Chem. Soc. 2005, 127, 3964. https://doi.org/10.1021/ja044995n
  11. Lipkowitz, K. B.; Cavanaugh, M. W.; Baker, B.; O'Donnell, M. J . J. Org. Chem. 1991, 56, 5181. https://doi.org/10.1021/jo00017a035
  12. Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc. 1997, 119, 12414. https://doi.org/10.1021/ja973174y
  13. O'Donnell, M. J.; Benett, W. D.; Wu, S. J. Am. Chem. Soc. 1989, 111, 2353. https://doi.org/10.1021/ja00188a089
  14. O'Donnell, M. J.; Wu, S.; Huffman, J. C. Tetrahedron 1994, 50, 4507. https://doi.org/10.1016/S0040-4020(01)89382-0
  15. Kim, M.-H.: Choi, S.-H.; Lee, Y.- J.; Lee, J.; Nahm, K.; Jeong, B.-S.; Park, H.-G.; Jew, S.-S. Chem. Commun. 2009, 782.
  16. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03W, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
  17. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  18. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  19. Bauschlicher, C. W., Jr.; Partridge, H. J. Chem. Phys. 1995, 103, 1788. https://doi.org/10.1063/1.469752
  20. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502. https://doi.org/10.1021/jp960976r
  21. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. https://doi.org/10.1063/1.456010
  22. Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1990, 94, 5523. https://doi.org/10.1021/j100377a021
  23. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. https://doi.org/10.1021/jp9716997
  24. Wang, D. Z.; Streitwieser, A. J. Org. Chem. 2003, 68, 8936. https://doi.org/10.1021/jo034543d
  25. Streiwieser, A. J. Mol. Model 2006, 12, 673. https://doi.org/10.1007/s00894-005-0045-3

Cited by

  1. Computational study on ionic and ion pair methylation reactions of enethiolates and their lithium salts vol.137, pp.11, 2018, https://doi.org/10.1007/s00214-018-2379-9
  2. Dimeric cinchona ammonium salts with benzophenone linkers: enantioselective phase transfer catalysts for the synthesis of α-amino acids vol.8, pp.4, 2018, https://doi.org/10.1039/C7RA12499F
  3. Syn-Selective Synthesis of β-Branched α-Amino Acids by Alkylation of Glycine-Derived Imines with Secondary Sulfonates vol.17, pp.20, 2012, https://doi.org/10.1021/acs.orglett.5b02448
  4. Counter-rotatable dual cinchona quinuclidinium salts and their phase transfer catalysis in enantioselective alkylation of glycine imines vol.57, pp.55, 2012, https://doi.org/10.1039/d1cc02785a