DOI QR코드

DOI QR Code

Enhancement of Photocurrent Generation by C60-encapsulated Single-walled Carbon Nanotubes in Ru-sensitized Photoelectrochemical Cell

  • Lee, Jung-Woo (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Park, Tae-Hee (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Lee, Jong-Taek (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Jang, Mi-Ra (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Lee, Seung-Jin (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Kim, Hee-Su (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Han, Sung-Hwan (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Yi, Whi-Kun (Department of Chemistry and Research Institute for Natural Science, Hanyang University)
  • Received : 2012.03.09
  • Accepted : 2012.05.14
  • Published : 2012.08.20

Abstract

Single-walled carbon nanotubes (SWNTs) and $C_{60}$-encapsulated SWNTs ($C_{60}@SWNTs$) are introduced to Ru-sensitized photoelectrochemical cells (PECs), and photocurrents are compared between two cells, i.e., an $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell and an $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell. [L = 2,2'-bipyridine-4,4'-dicarboxylic acid, DAPV = di-(3-aminopropyl)-viologen, and ITO = indium-tin oxide] The photocurrents are increased by 70.6% in the presence of $C_{60}@SWNTs$. To explain the photocurrent increase, the reverse-field emission method is used, i.e., $RuL_2(NCS)_2$/DAPV/SWNTs/ITO cell (or $RuL_2(NCS)_2$/DAPV/$C_{60}@SWNTs$/ITO cell) as an anode and a counter electrode Pt as a cathode in the external electric field. The improved field emission properties, i.e., ${\beta}$ (field enhancement factor) and emission currents in the reverse-field emission with $C_{60}@SWNTs$ indicate the enhancement of the PEC electric field, which implies the improvement of the electron transfer rate along with the reduced charge recombination in the cell.

Keywords

References

  1. Kim, Y. G.; Walker, J.; Samuelson, L. A.; Kumar, J. Nano Lett. 2003, 2(4), 523.
  2. Hara, K.; Sayama, K.; Ohga, Y.; Shinpo, A.; Suga, S.; Arakawa, H. Chem. Commun. 2001, 6, 569.
  3. Mane, R. S.; Lee, W. J.; Pathan, W. J.; Han, S. H. J. Phys. Chem. B 2005, 109(51), 24254. https://doi.org/10.1021/jp0531560
  4. Sheeney-Haj-Ichia, L.; Basnar, B.; Willner, I. Angew. Chem. Int. Ed. 2004, 44(1), 78
  5. Lee, T. Y.; Alegaonkar, P. S.; Yoo, J. B. Thin Solid Films 2007, 515(12), 5131. https://doi.org/10.1016/j.tsf.2006.10.056
  6. Robel, I.; Bunker, B. A.; Kamat, P. V. Adv. Mater. 2005, 17(21), 2458. https://doi.org/10.1002/adma.200500418
  7. Sumanasekera, G. U.; Adu, C. K. W.; Fang, S.; Eklund, P. C. Phys. Rev. Lett. 2000, 85(5), 1096. https://doi.org/10.1103/PhysRevLett.85.1096
  8. Bradley, K.; Jhi, S. H.; Hone, P. G.; Hone, J.; Cohen, M. L.; Louie, S. G.; Zettl, A. Phys. Rev. Lett. 2000, 85(20), 4361. https://doi.org/10.1103/PhysRevLett.85.4361
  9. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Science 2000, 287, 1801. https://doi.org/10.1126/science.287.5459.1801
  10. Li, J. Q.; Zhang, Y. F.; Zhang, M. X. Chem. Phys. Lett. 2002, 364, 328. https://doi.org/10.1016/S0009-2614(02)01303-9
  11. Jang, S. R.; Vittal, R.; Kim, K. J. Langmuir 2004, 20(22), 9807. https://doi.org/10.1021/la049022f
  12. Li, Y. F.; Kaneko, T.; Hatakeyama, R. Appl. Phys. Lett. 2008, 92(18), 183115. https://doi.org/10.1063/1.2924300
  13. Lee, J. U. Appl. Phys. Lett. 2005, 87(7), 073101. https://doi.org/10.1063/1.2010598
  14. Ong, P. L.; Euler, W. B.; Levissky, I. A. Nano Technol. 2010, 21(10), 105203.
  15. Wei, J.; Jia, Y.; Shu, Q.; Gu, Z.; Wang, K.; Zhuang, D.; Zhang, G.; Wang, Z.; Luo, J.; Cao, A.; Wu, D. Nano Lett. 2007, 7, 2317. https://doi.org/10.1021/nl070961c
  16. Tzolov, M. B.; Kuo, T. F.; Straus, D. A.; Yin, A.; Xu, J. J. J. Phys. Chem. C 2007, 111(15), 5800. https://doi.org/10.1021/jp068701r
  17. Li, Z.; Vasyl, P. K.; Viney, S.; Xu, Y.; Dervishi, E.; Salamo, G. J.; Biris, A. R.; Biris, A. S. Appl. Phys. Lett. 2008, 93(24), 243117. https://doi.org/10.1063/1.3050465
  18. Lee, W. J.; Lee, J. W.; Lee, S. H.; Chang, J. H.; Yi, W. K.; Han, S. H. J. Phys. Chem. C 2007, 111(26), 9110. https://doi.org/10.1021/jp070165v
  19. Hyung, K. H.; Kim, D. Y.; Han, S. H. New J. Chem. 2005, 29(8), 1022. https://doi.org/10.1039/b502353j
  20. Lee, W. J.; Hyung, K. H.; Kim, Y. H.; Cai, G.; Han, S. H. Electrochem. Commun. 2007, 9, 729. https://doi.org/10.1016/j.elecom.2006.10.020
  21. Bhattacharyya, S.; Kymakis, E.; Amaratunga, G. A. J. J. Chem. Mater. 2004, 16(23), 4819. https://doi.org/10.1021/cm0496063
  22. Okada, S.; Otani, M.; Oshiyama, A. Phys. Rev. B 2003, 67(20), 205411. https://doi.org/10.1103/PhysRevB.67.205411
  23. Okada, S.; Otani, M.; Oshiyama, A. Phys. Rev. B 2003, 68(12), 125424. https://doi.org/10.1103/PhysRevB.68.125424
  24. Hombaker, D. J.; Kahng, S. J.; Misra, S. B.; Smith, B. W.; Johnson, A. T.; Mele, E. J.; Luzzi, D. E.; Yazdani, A. Science 2002, 295, 828. https://doi.org/10.1126/science.1068133
  25. Dubay, O.; Kresse, G. Phys. Rev. B 2004, 70(16), 165424. https://doi.org/10.1103/PhysRevB.70.165424
  26. Pichler, T.; Kukovecz, A.; Kuzmany, H.; Achiba, H. Y. Phys. Rev. B 2003, 67(12), 125416. https://doi.org/10.1103/PhysRevB.67.125416
  27. Shiozawa, H.; Ishii, H.; Kihara, H.; Sasaki, N.; Nakamura, S.; Yoshida, T.; Takayama, Y.; Miyahara, T.; Suzuki, S.; Achiba, Y.; Kodama, T.; Higashiguchi, M.; Chi, X. Y.; Nakatake, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Kataura, H. Phys. Rev. B 2006, 73(7), 075406. https://doi.org/10.1103/PhysRevB.73.075406
  28. Lee, W. J.; Lee, J. W.; Yi, W. K.; Han, S. H. Adv. Mater. 2010, 22(20), 2264. https://doi.org/10.1002/adma.200903841
  29. Kymakis, E.; Amaratunga, G. A. J. Sol. Energy Mater. Sol. Cells 2003, 80(4), 465. https://doi.org/10.1016/j.solmat.2003.08.013
  30. Lee, W. J.; Lee, J. W.; Yi, W. K.; Han, S. H. Appl. Phys. Lett. 2008, 92(15), 153510. https://doi.org/10.1063/1.2911740
  31. Arranz-Andres, J.; Blau, W. J. Carbon 2008, 46(15), 2067. https://doi.org/10.1016/j.carbon.2008.08.027
  32. Lee, K. M.; Hu, C. W.; Chen, H. W.; Ho, K. C. Sol. Energy Mater. Sol. Cells 2008, 92(12), 1628. https://doi.org/10.1016/j.solmat.2008.07.012
  33. Vavro, J.; Llaguno, M. C.; Satishkumar, B. C.; Luzzi, D. E.; Fischer, J. E. Appl. Phys. Lett. 2002, 80(8), 1450. https://doi.org/10.1063/1.1452788
  34. Lee, J. W.; Lee, W. J.; Park, E. K.; Park, T. H.; Nah, Y. C.; Han, S. H.; Yi, W. K. Appl. Phys. Lett. 2010, 96(17), 173506. https://doi.org/10.1063/1.3405674
  35. Lee, J. W.; Lee, W. J.; Sim, K. J.; Han, S. H.; Yi, W. K. J. Vac. Sci. Technol. B 2008, 26(2), 847. https://doi.org/10.1116/1.2870223
  36. Lee, J. W.; Lee, W. J.; Sim, K. J.; Han, S. H.; Yi, W. K. J. Vac. Sci. Technol. B 2008, 26(6), 1892. https://doi.org/10.1116/1.3006020
  37. Mozer, A. J.; Sariciftci, N. S.; Lutsen, L.; Vanderzande, D. Osterbacka, R.; Westerling, M.; Guska, G. Appl. Phys. Lett. 2005, 86, 112104. https://doi.org/10.1063/1.1882753

Cited by

  1. Photoelectrochemical Cells vol.37, pp.8, 2016, https://doi.org/10.1002/bkcs.10837