References
- Safak, C.; Simsek, R. Mini. Rev. Med. Chem. 2006, 6, 747. https://doi.org/10.2174/138955706777698606
- Nakayama, H.; Kasoaka, Y. Heterocycles 1996, 42, 901. https://doi.org/10.3987/REV-95-SR4
- Sausins, A.; Duburs, G. Heterocycles 1988, 27, 279.
- Sorkin, E. M.; Clissold, S. P.; Brodgen, R. N. Drugs 1985, 30, 182. https://doi.org/10.2165/00003495-198530030-00002
- Inotsume, N.; Nakano, M. J. Biochem. Biophys Methods 2002, 54, 255. https://doi.org/10.1016/S0165-022X(02)00120-3
- Ganem, B. Acc. Chem. Res. 2009, 42, 463. https://doi.org/10.1021/ar800214s
- Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
- Ramon, D. J.; Yus, M. Angew. Chem. Int. Ed. Engl. 2005, 44, 1602. https://doi.org/10.1002/anie.200460548
- Simon, C.; Con-stantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004, 4957.
- Loev, B.; Snader, K. M. J. Org. Chem. 1965, 30, 1914. https://doi.org/10.1021/jo01017a048
- Breitenbucher, J. G.; Figliozzi, G. Tetrahedron Lett. 2000, 41, 4311. https://doi.org/10.1016/S0040-4039(00)00660-2
- Ohberg, L.; Westman, J. Synlett 2001, 1296.
- Tewari, N.; Dwivedi, R.; Tripathi, P. Tetrahedron Lett. 2004, 45, 9011.
- Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J. S. Tetrahedron Lett. 2003, 44, 4129. https://doi.org/10.1016/S0040-4039(03)00813-X
- Babu, G.; Peruma, P. T. l. Aldrichim. Acta 2000, 33, 16.
- Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 5771. https://doi.org/10.1016/j.tetlet.2005.05.148
- Koukabi, N.; Khazaei, A.; Zolfigol, M. A.; Shirmardi-shaghasemi, B.; Khavasi, H. R. Chem. Commun. 2011, 47, 9230. https://doi.org/10.1039/c1cc12693h
- Astruc, D., Lu, F., Aranzaes, J. R. Angew. Chem. Int. Ed. 2005, 44, 7852. https://doi.org/10.1002/anie.200500766
- Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164. https://doi.org/10.1021/jo0504464
- Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583. https://doi.org/10.1021/ol016258r
- Bock, V. D.; Heimstra, H.; Van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 1, 51.
- Debache, A.; Ghalema, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2009, 50, 5248. https://doi.org/10.1016/j.tetlet.2009.07.018
- Moshtaghi Zonouz, A.; Moghani, D. Synth. Commun. 2011, 41, 2152. https://doi.org/10.1080/00397911.2010.499488
- Marco-Contelles, J.; Leon, R.; de los Ríos, C.; Guglietta, A.; Terencio, J.; G. Lopez, M.; G. García, A.; Villarroya, M. J. Med. Chem. 2006, 49, 7607 https://doi.org/10.1021/jm061047j
- Jiang, Y.; Gao, S.; Li, Z.; Jia, X.; Chen, Y. Mater. Sci. Eng. B 2011, 176, 1021. https://doi.org/10.1016/j.mseb.2011.05.023
Cited by
- A green synthesis of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives using nanosilica-supported tin(II) chloride as a heterogeneous nanocatalyst vol.144, pp.12, 2013, https://doi.org/10.1007/s00706-013-1068-6
- Sequence Selective Michael Addition for Synthesis of Indeno-Pyridine and Indeno-Pyran Derivatives in One-Pot Reaction Using CuO Nanoparticles in Water vol.52, pp.6, 2015, https://doi.org/10.1002/jhet.2228
- Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4003
- A convenient and efficient synthesis of triarylamine derivatives using CuI nanoparticles vol.4, pp.32, 2014, https://doi.org/10.1039/c4ra00853g
- Comparative Study of Catalytic Potential of TBAB, BTEAC, and CTAB in One-Pot Synthesis of 1,4-Dihydropyridines Under Aqueous Medium vol.44, pp.4, 2012, https://doi.org/10.1080/00397911.2013.825807
- Highly efficient synthesis of benzopyranopyridines via ZrP2O7 nanoparticles catalyzed multicomponent reactions of salicylaldehydes with malononitrile and thiols vol.35, pp.4, 2012, https://doi.org/10.1080/17415993.2014.913291
- Simultaneous sonication assistance for the synthesis of tetrahydropyridines and its efficient catalyst ZrP2O7 nanoparticles vol.21, pp.3, 2012, https://doi.org/10.1016/j.ultsonch.2013.11.011
- Sonochemically synthesis of arylethynyl linked triarylamines catalyzed by CuI nanoparticles: A rapid and green procedure for Sonogashira coupling vol.22, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2014.05.016
- Multicomponent Reactions in Organic Synthesis Using Copper‐Based Nanocatalysts vol.1, pp.9, 2016, https://doi.org/10.1002/slct.201600414
- Nano ZrP2O7 Catalyzed Multicomponent Reaction for an Easy Access of 4H-pyrans and 1,4-dihydropyridines vol.36, pp.5, 2012, https://doi.org/10.1080/10406638.2015.1061027
- A highly efficient CuI nanoparticles-catalyzed synthesis of tetrahydrochromenediones and dihydropyrano[c]chromenediones under grinding vol.71, pp.7, 2012, https://doi.org/10.1515/znb-2015-0195
- Green Synthesis of Copper Nanoparticles Using Alchornea laxiflora Leaf Extract and Their Catalytic Application for Oxidative Desulphurization of Model Oil vol.42, pp.4, 2018, https://doi.org/10.1007/s40995-017-0404-9
- An Effective One-Pot Access to 2-Amino-4H-benzo[b]pyrans and 1,4-Dihydropyridines via γ-Cyclodextrin-Catalyzed Multi-Component Tandem Reactions in Deep Eutectic Solvent vol.149, pp.6, 2012, https://doi.org/10.1007/s10562-019-02767-x
- Diversified Synthetic Pathway of 1, 4-Dihydropyridines: A Class of Pharmacologically Important Molecules vol.20, pp.None, 2012, https://doi.org/10.2174/1389557520666200807130215