DOI QR코드

DOI QR Code

CuI Nanoparticles as New, Efficient and Reusable Catalyst for the One-pot Synthesis of 1,4-Dihydropyridines

  • Safaei-Ghomi, Javad (Department of Organic Chemistry, Faculty of Chemistry, University of Kashan) ;
  • Ziarati, Abolfazl (Department of Organic Chemistry, Faculty of Chemistry, University of Kashan) ;
  • Teymuri, Raheleh (Department of Organic Chemistry, Faculty of Chemistry, University of Kashan)
  • Received : 2012.05.05
  • Accepted : 2012.05.16
  • Published : 2012.08.20

Abstract

A simple one-pot synthesis of two derivatives of 1,4-dihydropyridines has been described under reflux conditions using copper iodide nanoparticles (CuI NPs) as a catalyst in high yields. This method demonstrated four-component coupling reactions of aldehydes and ammonium acetate via two pathways. In one route, the reaction was performed using 2 eq ethyl acetoacetate while in the other one 1 eq ethyl acetoacetate and 1 eq malononitrile were used. The CuI NPs was reused and recycled without any loss of activity and product yield. It is noteworthy to state that wide range of the 1,4-dihydropyridines have attracted large interest due to pharmacological and biological activities.

Keywords

References

  1. Safak, C.; Simsek, R. Mini. Rev. Med. Chem. 2006, 6, 747. https://doi.org/10.2174/138955706777698606
  2. Nakayama, H.; Kasoaka, Y. Heterocycles 1996, 42, 901. https://doi.org/10.3987/REV-95-SR4
  3. Sausins, A.; Duburs, G. Heterocycles 1988, 27, 279.
  4. Sorkin, E. M.; Clissold, S. P.; Brodgen, R. N. Drugs 1985, 30, 182. https://doi.org/10.2165/00003495-198530030-00002
  5. Inotsume, N.; Nakano, M. J. Biochem. Biophys Methods 2002, 54, 255. https://doi.org/10.1016/S0165-022X(02)00120-3
  6. Ganem, B. Acc. Chem. Res. 2009, 42, 463. https://doi.org/10.1021/ar800214s
  7. Domling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  8. Ramon, D. J.; Yus, M. Angew. Chem. Int. Ed. Engl. 2005, 44, 1602. https://doi.org/10.1002/anie.200460548
  9. Simon, C.; Con-stantieux, T.; Rodriguez, J. Eur. J. Org. Chem. 2004, 4957.
  10. Loev, B.; Snader, K. M. J. Org. Chem. 1965, 30, 1914. https://doi.org/10.1021/jo01017a048
  11. Breitenbucher, J. G.; Figliozzi, G. Tetrahedron Lett. 2000, 41, 4311. https://doi.org/10.1016/S0040-4039(00)00660-2
  12. Ohberg, L.; Westman, J. Synlett 2001, 1296.
  13. Tewari, N.; Dwivedi, R.; Tripathi, P. Tetrahedron Lett. 2004, 45, 9011.
  14. Sabitha, G.; Reddy, G. S. K. K.; Reddy, C. S.; Yadav, J. S. Tetrahedron Lett. 2003, 44, 4129. https://doi.org/10.1016/S0040-4039(03)00813-X
  15. Babu, G.; Peruma, P. T. l. Aldrichim. Acta 2000, 33, 16.
  16. Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2005, 46, 5771. https://doi.org/10.1016/j.tetlet.2005.05.148
  17. Koukabi, N.; Khazaei, A.; Zolfigol, M. A.; Shirmardi-shaghasemi, B.; Khavasi, H. R. Chem. Commun. 2011, 47, 9230. https://doi.org/10.1039/c1cc12693h
  18. Astruc, D., Lu, F., Aranzaes, J. R. Angew. Chem. Int. Ed. 2005, 44, 7852. https://doi.org/10.1002/anie.200500766
  19. Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164. https://doi.org/10.1021/jo0504464
  20. Ma, D.; Xia, C. Org. Lett. 2001, 3, 2583. https://doi.org/10.1021/ol016258r
  21. Bock, V. D.; Heimstra, H.; Van Maarseveen, J. H. Eur. J. Org. Chem. 2006, 1, 51.
  22. Debache, A.; Ghalema, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Tetrahedron Lett. 2009, 50, 5248. https://doi.org/10.1016/j.tetlet.2009.07.018
  23. Moshtaghi Zonouz, A.; Moghani, D. Synth. Commun. 2011, 41, 2152. https://doi.org/10.1080/00397911.2010.499488
  24. Marco-Contelles, J.; Leon, R.; de los Ríos, C.; Guglietta, A.; Terencio, J.; G. Lopez, M.; G. García, A.; Villarroya, M. J. Med. Chem. 2006, 49, 7607 https://doi.org/10.1021/jm061047j
  25. Jiang, Y.; Gao, S.; Li, Z.; Jia, X.; Chen, Y. Mater. Sci. Eng. B 2011, 176, 1021. https://doi.org/10.1016/j.mseb.2011.05.023

Cited by

  1. A green synthesis of 3,4-dihydropyrimidine-2(1H)-one/thione derivatives using nanosilica-supported tin(II) chloride as a heterogeneous nanocatalyst vol.144, pp.12, 2013, https://doi.org/10.1007/s00706-013-1068-6
  2. Sequence Selective Michael Addition for Synthesis of Indeno-Pyridine and Indeno-Pyran Derivatives in One-Pot Reaction Using CuO Nanoparticles in Water vol.52, pp.6, 2015, https://doi.org/10.1002/jhet.2228
  3. Preparation of Copper Nanoparticles and Catalytic Properties for the Reduction of Aromatic Nitro Compounds vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.4003
  4. A convenient and efficient synthesis of triarylamine derivatives using CuI nanoparticles vol.4, pp.32, 2014, https://doi.org/10.1039/c4ra00853g
  5. Comparative Study of Catalytic Potential of TBAB, BTEAC, and CTAB in One-Pot Synthesis of 1,4-Dihydropyridines Under Aqueous Medium vol.44, pp.4, 2012, https://doi.org/10.1080/00397911.2013.825807
  6. Highly efficient synthesis of benzopyranopyridines via ZrP2O7 nanoparticles catalyzed multicomponent reactions of salicylaldehydes with malononitrile and thiols vol.35, pp.4, 2012, https://doi.org/10.1080/17415993.2014.913291
  7. Simultaneous sonication assistance for the synthesis of tetrahydropyridines and its efficient catalyst ZrP2O7 nanoparticles vol.21, pp.3, 2012, https://doi.org/10.1016/j.ultsonch.2013.11.011
  8. Sonochemically synthesis of arylethynyl linked triarylamines catalyzed by CuI nanoparticles: A rapid and green procedure for Sonogashira coupling vol.22, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2014.05.016
  9. Multicomponent Reactions in Organic Synthesis Using Copper‐Based Nanocatalysts vol.1, pp.9, 2016, https://doi.org/10.1002/slct.201600414
  10. Nano ZrP2O7 Catalyzed Multicomponent Reaction for an Easy Access of 4H-pyrans and 1,4-dihydropyridines vol.36, pp.5, 2012, https://doi.org/10.1080/10406638.2015.1061027
  11. A highly efficient CuI nanoparticles-catalyzed synthesis of tetrahydrochromenediones and dihydropyrano[c]chromenediones under grinding vol.71, pp.7, 2012, https://doi.org/10.1515/znb-2015-0195
  12. Green Synthesis of Copper Nanoparticles Using Alchornea laxiflora Leaf Extract and Their Catalytic Application for Oxidative Desulphurization of Model Oil vol.42, pp.4, 2018, https://doi.org/10.1007/s40995-017-0404-9
  13. An Effective One-Pot Access to 2-Amino-4H-benzo[b]pyrans and 1,4-Dihydropyridines via γ-Cyclodextrin-Catalyzed Multi-Component Tandem Reactions in Deep Eutectic Solvent vol.149, pp.6, 2012, https://doi.org/10.1007/s10562-019-02767-x
  14. Diversified Synthetic Pathway of 1, 4-Dihydropyridines: A Class of Pharmacologically Important Molecules vol.20, pp.None, 2012, https://doi.org/10.2174/1389557520666200807130215