DOI QR코드

DOI QR Code

Formation of Niobium Oxide Film with Duplex Layers by Galvanostatic Anodization

  • Kim, Hyun-Kee (Department of Biological Science, Andong National University) ;
  • Yoo, Jeong-Eun (Department of Chemical Engineering, Inha University) ;
  • Park, Ji-Young (Department of Chemical Engineering, Inha University) ;
  • Seo, Eul-Won (Department of Biological Science, Andong National University) ;
  • Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
  • Received : 2012.04.02
  • Accepted : 2012.05.15
  • Published : 2012.08.20

Abstract

Studies on niobium anodization in the mixture of 1 M $H_3PO_4$ and 1 wt % HF at galvanostatic anodization are described here in detail. Interestingly, duplex niobium oxide consisting of thick barrier oxide and correspondingly thick porous oxide was prepared at a constant current density of higher than 0.3 $mAcm^{-2}$, whereas simple porous type oxide was formed at a current density of lower than 0.3 $mAcm^{-2}$. In addition, simple barrier or porous type oxide was obtained by galvanostatic anodization at a single electrolyte of either 1 M $H_3PO_4$ or 1 wt % HF, respectively. The formation mechanism of duplex type structures was ascribed to different forming voltages required for moving anions.

Keywords

References

  1. Castro, A.; Millán, P.; Pardo, L.; Jimenez, B. J. Mater. Chem. 1999, 9, 1313. https://doi.org/10.1039/a902492a
  2. Aegerter, M. A. Sol. Energ. Mat. Sol. C 2001, 68, 401. https://doi.org/10.1016/S0927-0248(00)00372-X
  3. Sayama, K.; Sugihara, H.; Arakawa, H. Chem. Mat. 1998, 10, 3825. https://doi.org/10.1021/cm980111l
  4. Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biomaterials 2001, 22, 1253. https://doi.org/10.1016/S0142-9612(00)00275-1
  5. Miyazaki, T.; Kim, H.; Kokubo, T.; Ohtsuki, C.; Nakamura, T. J. Ceram. Soc. Jpn. 2001, 109, 929. https://doi.org/10.2109/jcersj.109.1275_929
  6. Lee, C.; Kwon, D.; Yoo, J. E.; Lee, B. G.; Choi, J.; Chung, B. H. Sensors 2010, 10, 5160. https://doi.org/10.3390/s100505160
  7. Tauseef Tanvir, M.; Aoki, Y.; Habazaki, H. Thin Solid Films 2009, 517, 6711. https://doi.org/10.1016/j.tsf.2009.05.020
  8. Yoo, J. E.; Choi, J. Electrochem. Commun. 2011, 13, 298. https://doi.org/10.1016/j.elecom.2011.01.009
  9. Kominami, H.; Oki, K.; Kohno, M.; Onoue, S.; Kera, Y.; Ohtani, B. J. Mater. Chem. 2001, 11, 604. https://doi.org/10.1039/b008745i
  10. Torres, J. D.; Faria, E. A.; SouzaDe, J. R.; Prado, A. G. S. J. Photochem. Photobiol. A 2006, 182, 202. https://doi.org/10.1016/j.jphotochem.2006.02.027
  11. Xie, Y.; Li, Z.; Xu, Z.; Zhang, H. Electrochem. Commun. 2011, 13, 788. https://doi.org/10.1016/j.elecom.2011.05.003
  12. Choi, J.; Lim, J. H.; Lee, S. C.; Chang, J. H.; Kim, K. J.; Cho, M. A. Electrochim. Acta 2006, 51, 5502. https://doi.org/10.1016/j.electacta.2006.02.024
  13. Robert, L. K. Electrochem. Commun. 2005, 7, 1190. https://doi.org/10.1016/j.elecom.2005.08.027
  14. Lim, J. H.; Park, G.; Choi, J. Curr. Appl. Phys. 2012, 12, 155. https://doi.org/10.1016/j.cap.2011.05.029
  15. Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U. Nano Lett. 2002, 2, 677. https://doi.org/10.1021/nl025537k
  16. Patermarakis, G.; Papandreadis, N. Electrochim. Acta 1993, 38, 2351. https://doi.org/10.1016/0013-4686(93)80119-K
  17. Shawaqfeh, A. T.; Baltus, R. E. J. Electrochem. Soc. 1998, 145, 2699. https://doi.org/10.1149/1.1838701
  18. Ono, S.; Saito, M.; Ishiguro, M.; Asoh, H. J. Electrochem. Soc. 2004, 151, B473. https://doi.org/10.1149/1.1767838
  19. Ono, S.; Saito, M.; Asoh, H. Electrochim. Acta 2005, 51, 827. https://doi.org/10.1016/j.electacta.2005.05.058
  20. Montero-Moreno, J. M.; Sarret, M.; Müller, C. Micropor. Mesopor. Mat. 2010, 136, 68. https://doi.org/10.1016/j.micromeso.2010.07.022
  21. Patermarakis, G.; Moussoutzanis, K. J. Electroanal. Chem. 2011, 659, 176. https://doi.org/10.1016/j.jelechem.2011.05.023
  22. Xie, Y.; Li, Z.; Xu, H.; Xie, K.; Xu, Z.; Zhang, H. Electrochem. Commun. doi: 10.1016/j.elecom.2012.01.021.
  23. Diggle, J. W.; Downie, T. C.; Coulding, C. W. Chem. Rev. 1969, 69, 365-405. https://doi.org/10.1021/cr60259a005