DOI QR코드

DOI QR Code

Theoretical Studies on Selectivity of Dibenzo-18-Crown-6-Ether for Alkaline Earth Divalent Cations

  • Heo, Ji-Young (Department of Biomedical Technology, Sangmyung University)
  • Received : 2012.04.19
  • Accepted : 2012.05.14
  • Published : 2012.08.20

Abstract

Crown ether is one of well-known host molecules and able to selectively sequester metal cation. We employed M06-2X density functional theory with IEFPCM and SMD continuum solvation models to study selectivity of dibenzo-18-crown-6-ether (DB18C6) for alkaline earth dications, $Ba^{2+}$, $Sr^{2+}$, $Ca^{2+}$, and $Mg^{2+}$ in the gas phase and in aqueous solution. $Mg^{2+}$ showed predominantly strong binding affinity in the gas phase because of strong polarization of CO bonds by cation. In aqueous solution, binding free energy differences became smaller among these dications. However, $Mg^{2+}$ had the best binding, being incompatible with experimental observations in aqueous solution. The enthalpies of the dication exchange reaction between DB18C6 and water cluster molecules were computed as another estimation of selectivity in aqueous solution. These results also demonstrated that $Mg^{2+}$ bound to DB18C6 better than $Ba^{2+}$. We speculated that the species determining selectivity in water could be 2:1 complexes of two DB18C6s and one dication.

Keywords

References

  1. Gokel, G. W.; Leevy, W. M.; Weber, M. E. Chem. Rev. 2004, 104, 2723. https://doi.org/10.1021/cr020080k
  2. Basilio, N.; Garcia-Rio, L.; Mejuto, J. C.; Perez-Lorenzo, M. J. Org. Chem. 2006, 71, 4280. https://doi.org/10.1021/jo060389u
  3. Wang, Z.; Chang, S. H.; Kang, T. J. Spec. Acta A: Mol. Biomol. Spec. 2008, 70, 313. https://doi.org/10.1016/j.saa.2007.08.006
  4. Suzuki, K.; Siswanta, D.; Otsuka, T.; Amano, T.; Ikeda, T.; Hisamoto, H.; Yoshihara, R.; Ohba, S. Anal. Chem. 2000, 72, 2200. https://doi.org/10.1021/ac9911241
  5. Dishong, D. M.; Gokel, G. W. J. Org. Chem. 1982, 47, 147. https://doi.org/10.1021/jo00340a033
  6. Gokel, G. W.; Goli, D. M.; Minganti, C.; Echegoyen, L. J. Am. Chem. Soc. 1983, 105, 6786. https://doi.org/10.1021/ja00361a003
  7. Buschmann, H.-J.; Cleve, E.; Denter, U.; Schollmeyer, E. J. Phys. Org. Chem. 1997, 10, 781. https://doi.org/10.1002/(SICI)1099-1395(199710)10:10<781::AID-POC939>3.0.CO;2-M
  8. Izatt, R. M.; Terry, R. E.; Haymore, B. L.; Hansen, L. D.; Dalley, N. K.; Avondet, A. G.; Christensen, J. J. J. Am. Chem. Soc. 1976, 98, 7620. https://doi.org/10.1021/ja00440a028
  9. Rounaghi, G. H.; Mofazzeli, F. J. Incl. Phenom. Macro. 2005, 51, 205. https://doi.org/10.1007/s10847-004-5691-z
  10. Glendening, E. D.; Feller, D. J. Am. Chem. Soc. 1996, 118, 6052. https://doi.org/10.1021/ja960469n
  11. Choi, C. M.; Lee, J. H.; Choi, Y. H.; Kim, H. J.; Kim, N. J.; Heo, J. J. Phys. Chem. A 2010, 114, 11167. https://doi.org/10.1021/jp1027299
  12. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. https://doi.org/10.1021/cr9904009
  13. Zhao, Y.; Truhlar, D. Theor. Chem. Accounts: Theor. Comput. Model. (Theor. Chim. Acta) 2008, 120, 215.
  14. Glendening, E. D.; Feller, D. J. Phys. Chem. 1996, 100, 4790. https://doi.org/10.1021/jp952546r
  15. Tomasi, J.; Mennucci, B.; Canc, E. J. Mol. Struc.: THEOCHEM 1999, 464, 211. https://doi.org/10.1016/S0166-1280(98)00553-3
  16. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. https://doi.org/10.1021/jp810292n
  17. Ho, J.; Klamt, A.; Coote, M. L. J. Phys. Chem. A 2010, 114, 13442. https://doi.org/10.1021/jp107136j
  18. Frisch, M. J.; T., G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc.: Wallingford CT, 2009.
  19. Burgess, J. Metal Ions in Solution; Ellis Horwood: 1978.

Cited by

  1. A DFT and QTAIM study of the novel d-block metal complexes with tetraoxa[8]circulene-based ligands vol.39, pp.10, 2015, https://doi.org/10.1039/C5NJ01255D
  2. Alkali and alkaline-earth metal complexes with tetraoxa[8]circulene sheet: a computational study by DFT and QTAIM methods vol.5, pp.31, 2012, https://doi.org/10.1039/c4ra13806f
  3. Structure, stability and intramolecular interaction of M(N5)2(M = Mg, Ca, Sr and Ba) : a theoretical study vol.5, pp.28, 2012, https://doi.org/10.1039/c5ra00818b
  4. A combined experimental and quantum mechanical investigation on some selected metal complexes of l-serine with first row transition metal cations vol.1081, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2014.10.048
  5. Separation study of Mg+2 from seawater and RO brine through a facilitated bulk liquid membrane transport using 18-Crown-6 vol.7, pp.4, 2017, https://doi.org/10.2166/wrd.2016.103
  6. Structure, Dynamics, and Adsorption of Charged Guest within the Nanocavity of Polymer-Functionalized Neutral Macrocyclic Host vol.10, pp.24, 2018, https://doi.org/10.1021/acsami.8b03874
  7. Ultra-dense (~20 Tdot/in 2 ) nanoparticle array from an ordered supramolecular dendrimer containing a metal precursor vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-40363-6