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We obtain the general formulation which can handle the rotational preionization spectrum of H2 in the region

above its H2
+ ionization threshold,  converging toward its rotationally excited

 limit and perturbed by the vibrationally excited levels 7pπ v = 1 and 5pπ v = 2. The

formulation is based on phase-shifted multichannel quantum-defect theory. With this formulation, resonance

structures are analyzed in detail.
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0BIntroduction

Autoionization spectra frequently show complex over-

lapping resonances caused by interlopers. Multichannel

quantum defect theory (MQDT) is a powerful tool used to

model such complex resonances using only a few para-

meters.1 However, resonance structures are not transparently

identified in its formulation because of its indirect treatment

of resonances. To exhibit resonance behaviors transparently,

phase-shifted base pairs were introduced to MQDT by

Giusti-Suzor and Fano,2 although their utility has been

limited because of the complicated transformations in multi-

closed-channel systems.3 Instead, this phase-shifted version

of MQDT has been used to acquire the minimum required

MQDT parameters from the observed spectra.4 For auto-

ionizing series perturbed by interlopers, however, there is no

need to perform all the complicated mathematical trans-

formations to identify the resonance structures. Outline

resonance structures acquired using physical simplifications

hold for such perturbed series. The remaining derivation is

normally much simpler, as first introduced by Cooke and

Cromer5 through the use of phase-shifted MQDT. Their

treatment was translated into a simple mathematical form by

Ueda,6 whose simple mathematical formulation was extend-

ed by us to a system involving 3 closed channels consisting

of an interloper that perturbs two interacting autoionizing

Rydberg series.7,8 

Unlike the case of atomic autoionization spectra, appli-

cation of phase-shifted MQDT to molecular autoionization

spectra is rare, with primitive analyses by Giusti-Suzor and

Lefebvre-Brion9 and by us10
 being the only published

reports. The phase-shifted MQDT reported in our previous

study10 was developed with an aim to analyze the resonance

structures in the photoionization spectrum of H2 in the region

above the threshold of its ionization to H2
+

, for which there exists an outstanding study using

frame transformation MQDT by Jungen and Dill.11 But, the

previous study failed at obtaining the general formulas and

only demonstrated the feasibility of the general formulation

by using the symbolic operation functionality of MATLAB®

to derive formulas on the fly for each energy point. Although

the approach of symbolic operation allowed the decom-

position of the interlopers' spectrum from the perturbed

autoionizing Rydberg spectrum for the system involving 8

channels, it was found to be too time-consuming to be used

practically. The formulation that can handle an arbitrary

number of interloper series is highly desirable and is achiev-

ed in the present study. The obtained general formulation

will be described and applied to the rotational preionization

of H2 perturbed by 7pπ v = 1 and 5pπ v = 2 to analyze the

resonance structures.

1BSystem

The practical use of MQDT with atomic systems generally

involves phase-shifted MQDT beginning directly from either

zero sub-matrices or zero diagonal sub-matrices depending

on the system.4 Consider a system involving n channels

composed of nc − 1 interlopers belonging to the upper limits,

one closed channel converging to the lower limit and

perturbed by the interlopers, and one open channel (see Fig.

1). Let the closed channels be indexed 1 to nc, and the open

channels by n. The ionization thresholds Ii, are taken to

satisfy . For such systems, the open-

open part Koo and the diagonal elements of the closed-closed

part Kcc of the short-range reactance matrix K can be set to

zero by phase renormalization.6,12 The phase-shifted reac-

tance matrix is given by
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where the tilde indicates the phase being shifted. It is

convenient to introduce a coupling parameter (i = 1, 2...

nc) for the reactance matrix elements  between the open

and closed channels. Its square  is related to the spectral

width  of the resonance peak of an autoionizing series i by

,2 where Ryd denotes the Rydberg con-

stant, and νi denotes the effective quantum number defined

by  for channel i.  denotes :

(2)

For molecular systems, the frame-transformation version

of MQDT is generally used.13 The reactance matrices used

in this version of MQDT are not of the form of Eq. (1). They

can be transformed into the form of (1) by shifting the

phases of the channel basis wavefunctions by 

using the formula given in Ref. [14]. For the photoionization

spectrum of molecular hydrogen, a lot of interloper series

participate in the photoionization. The description of the

extension of the previous formulation10 of MQDT to include

arbitrary numbers of interloper series will be presented in

the next section after a brief description of the Ueda's

formulation. 

Photoionization Cross Section

Photoionization cross sections can be calculated from

 where ω is the wave-number of an

absorbed photon, α is the fine-structure constant, and D is

the transition dipole moment (Ψ|T |i) from the initial state i to

the final energy-normalized autoionizing eigenfunction Ψ.3

In the phase-shifted MQDT, Ψ will be denoted with a tilde

as . The formula can be expanded in terms of the real

standing-wave channel basis functions in matrix form as:

(3)

where  represents the column vector composed of stand-

ing wave closed channel basis functions  with indices

running from i = 1 to nc for the system in Figure 1, and 

is the open channel standing wave channel basis function

and is equal to . The standing wave channel basis

functions  used in this study are defined in Ref. [3],

and take the form  in the outer

region. See Ref. [3] for a description of this form, which is

different from the one used by Jungen and Dill.11  in (3)

denotes phase shifted (≡πνi) by πμi i.e., 

where νi is the effective quantum number defined by E = Ii −
Ryd/  for channel i. The factor  in (3), which is equal

to , is needed to compensate for the energy non-

normalized  to make  energy-normalized. In the phase-

shifted representation, where  is null, the background

phase shift  is zero, whereby  is equal to the resonance

phase shift .15 The resonance phase shift  can be

conveniently obtained from the phase of  (see

Eq. (14) of Ref. [16]), where the complex reactance matrix

 denotes .

Closed channels pertaining to higher ionization limits

frequently act as interlopers to the autoionizing Rydberg

series, providing a broad background to the autoionizing

series converging to a lower limit. The influence of a single

interloper on the autoionization Rydberg series converging

to a lower limit has been examined by Connerade,17 Cooke

and Cromer,5 and Ueda.6 An interloper is assumed to be

unperturbed by the autoionizing Rydberg series pertaining to

a lower limit since its spectral width is normally much

broader than that of the autoionizing series with lower limit,

so that it ionizes too quickly to be affected by a lower-limit

series. According to this physical argument, cross sections

can be decoupled into those of an interloper belonging to

series 2 and of an autoionizing series 1 perturbed by an

interloper: 

, (4)

as obtained by Ueda,6 where K denotes , 

denotes the transition dipole moment to the open channel;

and  and  denote the reduced energy and line profile

index, respectively, for series 2 acting as an interloper

defined by: 

(5)

with  and  defined in (2).  denotes the transition

dipole moments to the channel basis function ; 

denotes the autoionizing cross-section of Rydberg series 2

acting as an envelope to the perturbed series;  and 

denote the reduced energy and the line profile index of the

perturbed Rydberg series 1, respectively. 

The photoionization spectrum of molecular hydrogen

considered by Jungen and Dill11 does not belong to either of

the systems mentioned above. More than one interloper

series participate in channel coupling to perturb the auto-
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Figure 1. The channel structure of a system comprising one pertur-
bed autoionizing closed channel, arbitrary numbers of interloper
channels and one open channel.  denotes the transition dipole
moment to the channel basis function . µi denotes the phase
shift to make the reactance matrix into the form given by (1).
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ionizing Rydberg series, and the formulation previously

developed to separate interlopers' spectra from autoionizing

Rydberg series requires extension in order to be able to work

with the effects of more than one interloper. 

Consider the extension of the interloper spectrum of the

previous formulation10 to an arbitrary number of interloper

channels to isolate the interloper's spectrum from the pertur-

bed autoionizing Rydberg series. For an arbitrary number of

interloper channels, the notations  and  used in the

previous formulation (4) need to be replaced by  and ,

respectively, to indicate that the whole interloper series from

2 to nc will be treated as a single effective interloper series I.

Let us also label the perturbed autoionizing series 1 as p.

Then (4) becomes

(6)

The form (6) indicates that all interloper series as a whole

are treated as a single effective interloper series described by

the single reduced energy  and line profile index . The

form relies on the decomposability of the whole resonance

dynamics into the resonance dynamics in the space com-

posed of the interloper channels and the resonance dynamics

in the channel pertaining to the lower limit. Resonance

dynamics described by the resonance positions and widths

are incorporated into the reduced energy parameter 

defined by . Since resonance positions and widths

are obtainable from the behavior of the phase shift δr, the

reduced energy and the phase shift are related by .

The decomposability of the resonance dynamics can be

formulated into the resonance phase shift. A previous study

showed that the resonance phase shift can be obtained from

the phase of the determinant of tan :18 

 where the complex reactance matrix  denotes

 with  or  satisfied for

the phase-shifted representation and C denotes the modulus

of the determinant. Q denotes the set of closed channels. The

bar enclosing a quantity is used to denote the determinant in

spite of the possibility of confusion with the notation of the

absolute values of complex numbers.

Decomposition can be performed by using the determinant

identity |A| = |B||E−DB−1C| for A = .19 As a preliminary

step,  is expressed in terms of the reduced energy

as  where the (i,j)th component of the

abbreviation  of  is given by 

≡  for  and −i for i = j.  defined by  =

 is the ratio of the direct coupling between

closed channels to their indirect coupling via open channels.

For consistent notation, let us denote  as . If the

determinant identity is applied,  can be decomposed

into the terms for the interloper and the perturbed series as

follows:

, (7)

with  and  denoting the elements of sub

matrices of the interloper-interloper part whose indices are i

and j running for the interloper set {I|i, j = 2, .., nc}. (The

formula for the case of nc = 2 needs to be treated separately

in several occasions in the general formulation for nc ≥ 2.

Since (4) can be used for the case of nc = 2, it is better to

assume nc > 2 without further ado.) The term  can be

expressed as  from which the single reduced

energy  representing the whole interloper series is obtain-

ed. As described in Appendix A, it is obtained as:

(8)

where cof denotes the cofactor and hII is introduced to

abbreviate . The roots of  corre-

spond to the resonance positions of the interloper series

since they correspond to the most rapidly varying points of

 defined by . It may be instructive to rewrite

(8) as .

Now consider the second term on the right-hand side of

(7). The term yields the reduced width  and energy

 of the perturbed autoionizing series 1 from its

equivalence to , which is the MQDT version of

. The perturbed reduced width may be decomposed

into the unperturbed width  and the enhancement factor

fpeff due to perturbation: . The derivation described in

Appendix B yields:
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Cross Section Formula. From the formula of the physical

wavefunction given by3

= (12)

the corresponding transition dipole moment  is obtained

as . Using the analytical

formula for the inverse of matrix and abbreviating 

as Dcc, we have

(13)

where the last equality follows from the definition of the line

profile index  given by ; adj(M) denotes the

adjoint of the matrix M;  denotes the phase of 

whose formula is given later in (19). The second term inside

the bracket of the right-hand side of (13) can be expressed in

terms of the reduced energy as follows:

(14)

Substituting (14) into (13) yields

(15)

where  is the vector whose ith component is given by

; Icp is a constant vector of ones and thus

adj(hcc)Icp is a vector whose mth component is given by

cofmn(h
cc). The scalar product between these two

vectors is obtained as . 

We want to express (13) into a decomposed form given by

(6). For that, only formulas for the line profile indices 

and  need to be derived since the formulas for the

reduced energies  and  are already obtained in (8) and

(9). After a lengthy derivation described in Appendix C, we

have

(16)

and

(17)

where  denotes the sub-vector of  restricted to the

channel space composed of only interloper series. The prime

on the sub-index means that rows/columns with primed

indexes are deleted. Accordingly,  denotes

the sub-matrx obtained from the matrix  by deleting

the mth row and nth column;  denotes the column sub-

vector obtained from the column vector  by deleting the

nth element; and  is similarly defined. 

Eq. (17) shows that  has a singular point at the zero of

fpeff. Although  becomes infinity at  in which

fpeff is zero, the maximum value of 

given by  does not go to infinity but is equal to one.

This means that the huge enhancement of the autoionization

spectrum in the neighborhood of the singular point of 

due to the perturbation by interloper series is completely

suppressed at the very singular point. In most cases, this

suppression can be ignored since the resonance peak of the

perturbed series does not likely lie at (or very close to) the

pole. 

Spectral Widths. Although spectral width Γ can be

obtained from the photoionization spectra from the half-

width-half-maximum of resonance peaks, it can be better

obtained by using its relation with the time-delay

 given by .2 In the phase-shifted

MQDT, the phase-shift due to background scattering is zero,

and the phase shift purely comes from the resonance

scattering. In the previous section, it is denoted as . Since
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from (A4), we have
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Usually,  (i = 2,...). Therefore,

the time delay is usually approximated with the first

term in the summation on the right-hand side of (21):

. Here, all the terms in (22) will be retained.

The first term  can be simplified further and is entitled

to a further treatment.

(23)

It is further simplified to22

(24)

Or, in terms of the time delay  of the

isolated autoionizing Rydberg series, (24) becomes

 

(Equality holds at the root of  fpeff = 0.) (25)

with  given by

(26)

where  is defined below (9). Eq. (26) is derived from 

=  with  =  and E =

Ip − Ryd/ . The right-hand side of (25) does not go to

infinity at the zero point of fpeff. Instead, it becomes zero at

the zero point of fpeff due to  from another term

. If the energy dependence of  is ignored, the

maximum and minimum values of  periodically appear

at  equal to zero and infinity with values 

and , respectively. Their ratio is given by

.

The spectral width may be obtained from Γ = . In

contrast to the time delays, spectral widths do not have

meaning for all the energy points but only at the (resonance)

peaks.

(27)

where Γp denotes . Γ in (27) is further simplified into

(28)

by substituting  into the derivative of

(19) with respect to E. The spectral width ΓI of an interloper

peak can be similarly obtained by replacing hcc in (28) with

hII. The denominator of (28) can be calculated using (20).

Application to the H2

The resonance structure of the preionization spectrum23 of

H2 in the region above its H2
+ ionization threshold, ( , v+

= 0, N+ = 0), is complicated due to perturbation by the

vibrationally excited levels 7pπ v = 1 and 5pπ v = 2. This

spectrum was studied by Jungen and Dill,11 whose study

remains one of the most accurate and extensive despite there

being many subsequent relevant studies on hydrogen mole-

cules.24

This system was chosen for the development of the phase-

shifted formulation of MQDT in the previous study.10 Unlike

the expectation that two interloper series can describe the

two interloper peaks assigned to 7pπ v = 1 and 5pπ v = 2, at

least 12 channels are needed for the reproduction of the

experimental data without discernible difference from the 22

channel calculation, which is regarded as a full calculation.

The formulation in the previous study, however, was limited

to the system composed of 1 open, 2 interloper, and 1

autoionizing Rydberg channels, and thus could not handle

the spectrum properly. The previous study only demonstrated

the feasibility of the general formulation by using the

symbolic operation functionality of MATLAB® to derive

formulas on the fly for each energy point. Although the

approach of symbolic operation allowed the decomposition

of the interlopers' spectrum from the perturbed autoionizing

Rydberg spectrum for the system involving 8 channels, it

was found to be too time-consuming to be used practically.

Since a formulation that can handle the arbitrary number

of interloper series is now attained in the previous section,

let us apply it to the preionization spectrum of H2. Numerical

details are already described in the previous paper10 and are

omitted here. Before starting the analysis of the resonance

structures in the spectrum of H2, let us first describe the

interesting properties that are satisfied by the QDT para-

meters for this molecular hydrogen system. [The label i of

22 channels defined in Figure 1 corresponds to the vib-

rotational quantum numbers of  as follows. The channels

for v+ from 1 to 10 with N+ = 0 correspond to i = 2, 4, ..., 20.

The channels for v+ from 0 to 10 with N+ = 2 correspond to i

= 1, 3, ..., 21 (≡ nc). The channel i = 22 (≡ n), which is open,

corresponds to v+ = 0 and N+ = 0. Sometimes this labelling

system is not convenient and another labelling system I, p,

and o introduced earlier are also used, where I stands for the

interloper series, p for the perturbed series by interlopers,

and o for the open channel. Channels in I may be indexed

from 1 to 20 within I itself.]

One of the interesting behaviors in QDT parameters

derives from the isotropic nature of the transition dipole

matrix elements dΛ(R) to the npΛ Rydberg series of H2, i.e.,

dΣ = dΠ ≡ d (= 2.86 a.u.), which indicates that a united atom

limit holds in the present system of H2.
25 In this united atom

limit, we have
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(29)

Although  is of a different sign for μ = Σ and Π, its

cosine is close to one over the significant range of R in

which the value of  is significant. Thus,

 can be treated as constant irrespective of Λ, and

the summation term of (29) can be approximated as 

times the Franck-Condon factor. Subsequently, for the

present indexing system of alternative appearance of N+ = 0

and 2 as i increases, the values of Di alternate which is

shown in Table 1. Since N+ = 2 for i = 1 and = 0 for the

initial state of H2,  is close to zero. Subsequently, the

value of the line profile index  for the

rotational preionization is close to zero and actually obtained

as −0.08, thus yielding a spectrum of window type. 

Another interesting property of QDT parameters holds for

the coupling between the electronic, rotational, and vibra-

tional motions for the present system. If we examine the

behaviors of the reactance matrix, one of the conspicuous

features is that coupling between the electronic and rotational

motions dominates coupling between the electronic and

vibrational motions. This behavior in the channel coupling

observed in the reactance matrix Kij, for

(30)

derives from the behaviors of the short-range quantum

defects. The short-range quantum defects for the Born-

Oppenheimer (BO) states  are positive, and those for

 are negative, indicating that an electron feels attractive

potential in , repulsive potential in . Because of

this behavior, (30) is very small for the same N+ and ,

and large for different N+ and . Because of this propen-

sity, the ratio of the sums of odd terms to that of even terms

of  is much larger than 1. In fact, we have 

= 72.7 for the reactance matrix before phase

renormalization, and 930 for the phase-shifted reactance

matrix. Dynamical implications of these properties of K may

be explored by partitioning the channels into those

belonging to N+ = 0 and 2 blocks, but extensive formulation

is needed to furnish meaningful results and will be left for

future research. 

Resonance Structures in the Interloper Spectrum. The

rotational preionization spectrum of H2 in the region

immediately above its H2
+ ionization threshold, ,

 is greatly complicated due to the perturbation from

the interloper series. In the neighborhood of the interloper

resonance peaks, the spectrum is dominated by the interloper

spectrum, and the present formulation, which views the

spectrum as the product of the unperturbed interloper

spectrum and the perturbed rotational preionization series,

usually holds. This kind of physical simplification holds if

the spectral width of the interloper series is much broader

than those of the autoionizing series perturbed by an

interloper. If the latter condition is met, electrons in an

interloper series autoionize so fast according to the un-

certainly principle that they have hardly any time to be

perturbed by the lower-limit series. Such an assumption is

usually satisfied by the fact that the spectral width decreases

as ν3, as the effective quantum number ν increases and

interloper series belonging to the higher limit have smaller ν

than that of the lower limit series. For the energy range of

interest in the H2 photoionization spectrum, effective quan-

tum numbers for the rotational preionization series are in the

range of 30-39, and the interloper’s correspond to 5 and 7.

Therefore, the assumption seems to be satisfied, but it is not.

Although interloper series have smaller effective quantum

numbers, their reduced widths become much smaller than

that of the lower-limit series because of the large channel

Di = d J′M″|J″M″10〈 〉  
Λ
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+〈 〉
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( Σ2 +

g, v
+
 = 0

N
+
 = 0)

Table 1. 8 channel phase-shifted QDT parameters. 2-, 3-, … , 22-channel phase-shifted QDT parameters can be found in the supplementary
materials

(v+, N+) (0,0) (0,2) (1,0) (1,2) (2,0) (2,2) (3,0) (3,2)

I (cm−1)

124417.3 124591.55 126608.64 126773.71 128672.75 128828.96 130613.86 130761.46

(0,0) 0 -0.4328 -0.0142 0.0799 0.0008 0.008 -0.0007 0.0025

(0,2) -0.4328 0 0.0905 -0.1179 0.0063 -0.0039 -0.0008 -0.0034

(1,0) -0.0142 0.0905 0 -0.4901 -0.0174 0.1171 -0.0081 0.0013

(1,2) 0.0799 -0.1179 -0.4901 0 0.1329 -0.1929 -0.0086 0.0062

(2,0) 0.0008 0.0063 -0.0174 0.1329 0 -0.5246 -0.0491 0.1188

(2,2) 0.008 -0.0039 0.1171 -0.1929 -0.5246 0 -0.0347 -0.2748

(3,0) -0.0007 -0.0008 -0.0081 -0.0086 -0.0491 -0.0347 0 0.6787

(3,2) 0.0025 -0.0034 0.0013 0.0062 0.1188 -0.2748 0.6787 0

μ

-0.0037 0.1212 -0.0059 0.1501 -0.0112 0.1704 -1.1035 0.423

 (a.u.)

0.4645 -0.0976 0.6076 -0.1234 0.6407 -0.1473 -0.4998 -0.1701

K̃

D̃
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coupling between the electronic and rotational motions

within the same vibrational quantum number v+ = 0, which is

shown in Table 1. Subsequently, the spectral widths Γ of the

interloper and the lower-limit series have almost the same

magnitudes when the reduced widths are multiplied by

 [see (26) and (27)].

Although the normal condition for the decomposition into

Ueda's formula is not met, Figure 2 shows that the interloper

spectrum still dominates the pure rotational autoionization

converging to the lower limit. The dominance in magnitude

allows us to ignore the perturbation from the lower-limit

series to the interloper spectrum and the decomposition into

the Ueda's formula may still be physically meaningful for

the present system (note that the decomposition can always

be performed mathematically without introducing any approxi-

mation whether or not such a decomposition is physically

meaningful). The reason why the spectrum is dominated by

interloper spectrum, with the perturbed rotational preioniz-

ing Rydberg series following the envelope it provides,

comes from two aspects of channel-channel couplings. In

the spectrum of interest, two interloper resonance peaks, 7pπ
v = 1 and 5pπ v = 2, lie close together. In the case of one

open channel, the reduced energy . defined in (8) for the

coupled two series corresponding two resonance peaks,

should have a singular point between the peaks. This derives

from the fact that the reduced energy for the first peak

increases monotonically from −∞ to ∞ via 0 at the resonance

point in one resonance interval, indicating that it is positive

in the interval between two peaks. Similarly, we can see that

the reduced energy should be negative in the same interval

for the second resonance peak. The only way it can be

positive and negative while increasing monotonically in the

same interval is that there should be a singular point

somewhere in the interval. Then, according to (8) and (16),

 also has a singular point at the same energy. Note that two

interloper peaks 7pπ v = 1 and 5pπ v = 2 in the spectrum lie

close together, so that the values of  are still large at the

two interloper peaks, as shown in Table 2. This contrasts

with the values of  for the rotational pre-ionizing peaks,

which is shown in the same table. Note that the ratio of peak

maxima of the Beutler-Fano terms  and

 in (6) is given by ,

which is the ratio of the peak maxima of the interloper

spectrum to that of the autoionizing Rydberg spectrum.

Table 2 shows that the interloper spectrum dominates the

autoionizing Rydberg spectrum. Generally, the closer the

two interloper peaks lie, the greater the dominance will be.

4Ryd/πν
3

ε̃I

q̃I

q̃I

q̃peff

ε̃I q̃I+( )2
/ ε̃I

2
1+( )

ε̃peff q̃peff+( )2
/ ε̃peff

2
1+( ) q̃I

2
1+( )/ q̃peff

2
1+( )

Figure 2. Unperturbed interloper and rotational preionizing series.

Table 2. The enhancement factors obtained from 22 channel QDT
calculation for the interloper and perturbed rotational preionization
series, respectively, at the corresponding resonance peaks

 (cm−1) + 1

124495.45 -30.44 927.43

12450.72 11.13 124.83

 (cm−1) + 1

124468.10 -0.844 1.713

124475.98 -0.889 1.790

124483.14 -0.973 1.946

124489.61 -1.097 2.204

124496.38 -7.571 58.318

124501.30 -3.286 11.800

124506.01 -2.335 6.451

124510.94 -1.543 3.380

124514.88 -0.619 1.383

124518.58 -0.393 1.154

E
ε̃ I=q̃I

1– q̃I q̃I

2

E
ε̃ peff=q̃peff

1– q̃peff q̃peff

2

Figure 3. (a) Convergence of the line profile function . Two
almost straight lines correspond to 2 and 3 interloper channels.
Curves consist of three different groups. One group consists of a
single curve corresponding to 4 interloper channels. Another group
forming a broad band corresponds to 5-9 interloper channels. The
group with a narrow band corresponds to 10-20 interloper
channels. (b), (c) The widths and energies of resonance peaks of
the interloper spectrum as functions of the number of participating
interloper series.

q̃I
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This analysis clearly shows that the spectral behavior in the

neighborhood of two interloper peaks 7pπ v = 1 and 5pπ v =

2 is governed by the interaction of two interloper peaks. 

The contributions of interloper channels to the interloper

spectrum can be examined from the behaviors of the conver-

gence of the spectral parameter , the resonance energies,

and the widths of the interloper resonance peaks as functions

of the number of participating interloper series. Figure 3

shows that the convergence of the parameters is slow, but the

main contribution to the parameters has already reached the

number of interloper series as small as 5, which corresponds

to v+ = 3. Even contribution up to v+ = 3 amounts to a large

number of channel contributions. This indicates that channel-

channel coupling among interloper channels is strong. 

Channel Coupling Exhibited in the Perturbed Rotational

Preionization Spectrum. Let us now consider the rotational

preionization spectrum perturbed by interloper series. The

perturbation can best be studied by examining the behavior

of the line profile function . Because of the pertur-

bation, the line profile index of the rotational preionization

spectrum is no longer a constant but a function of energy and

thus such a phenomenon as q reversal can take place.

According to the graph of  shown in Figure 4(d), q is

negative in most of the range of energy. It becomes positive

in a very narrow range of energy. Thus, the spectral shape

leans toward the left in most of the range of energy, and the q

reversal is not the prominent feature in the spectrum of

current interest, although it occurs twice. Instead, spectral

enhancement by intensity borrowing from interloper series

is the main feature in Figure 4(c), which shows two curves:

one is the perturbed rotational preionization spectrum given

by , and the other is the unper-

turbed given by . Spectral enhan-

cement, described by the factor , is caused by the

presence of two singular points at  in which fpeff is

zero. Figure 4(c) shows that not only spectral enhancement

takes place, but also diminishment by the channel coupling

with the interloper series occurs. This is caused by the

interference between two paths: one from p series and the

other from the effective interloper series I. 

Figure 4(c) shows that this channel coupling is not limited

to the neighborhood of the resonance peaks of the interloper

series, but is delocalized over the whole energy range of

interest, as already noted by Jungen and Dill.11 Such non-

local nature of channel coupling is clearly displayed in

Figure 4(d), in which differences in the q values in the

perturbed and unperturbed series persist over the entire

range of energy. The large nonlocal nature of channel coupl-

ing implies that channel coupling takes place at a shorter-

range comparing to other cases. 

Let us consider the effect of channel coupling on the

spectral width Γ of the rotational preionization, which are

related to the time delays τD by . As stated earlier,

q̃I

q̃peff

q̃peff

2hν ε̃peff q̃peff+( )2
/ ε̃peff

2
1+( )

2hν ε̃p q̃p+( )2
/ ε̃p

2
1+( )

q̃peff

2
1+

ε̃I = kp_I

Γ = 4h/τD

Figure 4. Preionization spectrum obtained by 12 channel QDT
calculation. (a) The oscillator strength spectrum is drawn with a
solid line, that of the interlopers composed of 10 closed and one
open channels with a dashed line and (df/dE)max with a dashed-dot
line. The positions of the resonance peak heights of the interloper
spectrum are drawn with vertical dashed-dot lines. The positions
of the resonance peak maxima of perturbed auto ionizing series
are drawn with vertical dotted lines. (b) The graph of the line
profile function for the interloper spectrum. (c) The oscillator
strength spectrum of the perturbed and unperturbed rotational
autoionizing Rydberg series are drawn with solid and dashed-dot
lines, respectively. (d) The graph of the perturbed and unperturbed
line profile functions  and  of the rotational autoionizing
series are drawn with solid and dotted lines, respectively. 

q̃peff q̃p

Figure 5. (a) Time delay spectra for the unperturbed and perturbed
rotational preionization obtained by 12-channel QDT calculation.
(b), (c) Time delays and widths at the resonance peaks of
unperturbed and perturbed p series obtained by 22 channel QDT
calculation. The dotted line with an x marker corresponds to the
unperturbed one and the solid line with + marker to the perturbed
one.
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time delays have several advantages over the spectral widths.

Contrary to the case of spectral widths, the separate contri-

bution of each channel-coupling to the time delays can be

examined. Besides that, calculation of time delays can be

done for all energies instead of being limited to the positions

of resonance as in the case of spectral widths. 

Figure 5(a) shows the time delays  and  in the

unperturbed and perturbed rotational preionization, respec-

tively. For the pure rotational preionization, time delay at the

peak maximum varies from 12.5 ps to 59.6 ps as the effec-

tive quantum number varies from 24.9 to 41.9. The minima

in the time delay curve is smaller than the maxima by ,

which is 0.035 for the system of interest. Thus, the minimum

varies from 0.44 ps to 2.09 ps. Compare the values of time

delays with one period of vibration 0.09 ps obtained from

 = 2321 cm−1 of H2
+ , and one period of rotation

0.23 ps from  = 30.2 cm−1 and .

Comparison shows that even the minimum time delay in

rotational preionization at  is comparable to but a

little longer than one period of rotation. Figure 5(b) shows

the time delays calculated at the resonance points of the

rotational preionization, which correspond to  for the

pure rotational preionization, and  for the perturbed

rotational preionization. According to the figure, the time

delay remains close to the unperturbed value, but becomes

1.5 ns at 124496.5 cm−1, which becomes 47 times longer

than the unperturbed value by the perturbation of the

interloper 5pπ v = 2. In terms of the spectral width, it

remains close to the unperturbed value but becomes 0.014

cm−1 at 124496.5 cm−1, which is 47 times smaller than the

unperturbed value by the perturbation of the interloper 5pπ
v = 2 [see Fig. 5(c)]. Thus, unperturbed and perturbed time

delays and spectral widths are almost the same in most

ranges of energy, except in the neighborhood of two reson-

ance peaks of interloper series. This indicates that the

influential range of channel coupling between the auto

ionizing Rydberg series p and the interloper series is limited

to the neighborhood of resonance peaks of interloper series.

The local nature of time delays is related to the derivative

with respect to energy. Since the short-range phase shifts are

insensitive to the energy variation, they do not contribute to

time delays. Thus, the contribution to time delays comes

mainly from the long-range region in which Coulomb

potential dominates. Because of the dominance of Coulomb

potential, the effect of interloper series on the time delays is

localized only in the neighborhood of resonance peaks of

interloper series.

Resonance Structures of the Spectrum as a Whole. So

far, we decomposed the whole preionization spectrum into

the interloper spectrum and the rotational preionization spec-

trum it perturbs, and analyzed the resonance structures of

each decomposed spectrum. Since the decomposed spectra

are not what is observed, let us consider how those resonance

structures identified in the decomposed spectra are mani-

fested in the whole observed spectrum. In this kind of

decomposition, it is usually assumed that the resonance

structures in the perturbed autoionizing series are not altered

in the whole spectrum. This assumption is based on the slow

variation of the interloper spectrum. For the present system

of interest, the interloper spectrum is composed of two

interacting peaks which make the structured background

into a type of roller coaster. The resonance structures in the

decomposed spectrum may no longer remain unaltered, and

are expected to undergo a change in the whole process (6).

Figures 6 and 7 show that the difference in resonance struc-

tures between the change from the decomposed spectrum

and the whole spectrum is only significant in the interloper

τDp τDpeff

W̃p
2

ωe Σ2 +

g( )
Be BeN

+
N

+
1+( ) = Iω

2
/2

νp 25≈

ε̃p = 0

ε̃peff = 0

Figure 6. Time delays and spectral widths of the resonance peaks
for the decomposed processes and the whole process are obtained
by 22 channel QDT calculation. Time delays and widths for the
decomposed processes are drawn with the dotted-lines in both (a)
and (b) and those for the whole process are drawn with the solid
line. The resonance positions for the interloper peaks are marked
with a square. Labels for the x-axis denote the resonance energies.
To avoid overwriting, only the different last digits are shown for
some positions. 

Figure 7. Spectral widths in the neighborhood of two interloper
peaks obtained by 22 channel QDT calculation. The lengths of
horizontal bars represent the spectral widths and the centers of the
bar correspond to the resonance positions. Upper horizontal bars
belong to the decomposed spectra and the lower bars to the whole
spectrum. The peaks 34p2 v = 0 and 5pπ v = 2 are wrongly
assigned in Jungen and Dill.11 The center of the solid bar in the
inlet is drawn at the correct resonance position. The dashed bar has
the same length as the solid bar but is shifted to the inside of the
peak to demonstrate that it is the width at the half maximum.
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spectrum, except for the resonance peak at 124506.1 cm−1.

Resonance structures in the perturbed rotational preioni-

zation series in the decomposed form are expected to undergo

a small change when the whole spectrum is considered,

since the channel coupling effect is already included in the

perturbed series. The significant change in the resonance

structures for the interloper peaks when the whole spectrum

is considered may indicate that the resonance structures are

actually changed from the interloper spectrum when the

rotational preionization series is present. The present formu-

lation properly describes the resonance structures for the

perturbed rotational preionization. But for the possible

change in resonance structures of the interloper spectrum, no

theory is yet available to fully account for the phenomenon.

4BResults and Discussion

The resonance structure of the preionization spectrum of

H2 in the region immediately above its H2
+ ionization

threshold, with  converging toward its

rotationally excited  limit, is complicated,

due to the perturbation by the vibrationally excited levels

7pπ v = 1 and 5pπ v = 2. This system is chosen for the

development of the phase-shifted formulation of multichannel

quantum defect theory, which decouples the spectrum into

the interloper spectrum and the autoionizing Rydberg series

perturbed by it. Since at least 12 channels are needed for the

reproduction of the experimental data without discernible

difference from the 22 channel calculation which is regarded

as a full calculation, the formulation that can handle an

arbitrary number of interloper channels is needed, and

attained in this study. This formulation is applied to the

complex preionization spectrum of H2 to study the resonance

structures. 

For the present system of interest, the interloper spectrum

is composed of interacting two peaks, which make the

structured background into the type of roller coaster, for

which the spectral widths of the interloper series are almost

the same size as those of the autoionizing series perturbed by

an interloper, and the usual condition for the decomposition

of the spectrum into the interloper's and perturbed spectra is

not met. Although the usual condition for the decomposition

into Ueda's formula is not met, the interloper spectrum still

dominates the perturbed rotational autoionization spectrum

in magnitude. This dominance in magnitude gives justi-

fication to the application of the formulation developed in

this study. Using the decomposed formula, the resonance

structures are analyzed in detail. For this spectrum, the q

reversal is not the prominent feature, although it actually

occurs twice. The q values are negative for most of the

spectral range of energy, and the spectral shape leans toward

the left in most of the range. Instead, spectral enhancement

by intensity borrowing from the interloper series is the main

feature, which derives from the interloper-interloper inter-

action between 7pπ v = 1 and 5pπ v = 2 peaks. The theory

tells us that the closer two interloper peaks lie, the greater the

dominance is of the interloper spectrum over the rotational

preionizing series.

Time delays and spectral widths perturbed by the inter-

loper series remain almost the same as the unperturbed

values in most ranges of energy, except in the neighborhood

of two resonance peaks of interloper series. This contrasts to

the case of the spectrum of oscillator strength. For the

oscillator strength, channel coupling is not limited to the

neighborhood of the resonance peaks of the interloper series,

but delocalized over the whole energy range of interest. The

local nature of time delays is related to the energy insen-

sitiveness of the short-range phase shifts. Thus, the contri-

bution to time delays and spectral widths will be mostly

from the long-range region in which Coulomb potential

dominates. Because of the dominance of Coulomb potential,

the effect of interloper series on the time delays is localized

only in the neighborhood of resonance peaks of interloper

series.

Time delays of the unperturbed rotational preionization at

the maxima of the resonance peaks vary from 12.5 ps to 59.6

ps in the spectral range of energy. However, time delay as

long as 1.5 ns is obtained at 124496.5 cm−1 by the pertur-

bation of the interloper 5pπ v = 2, which is 47 times larger

than the unperturbed value.

One interesting problem that has not been dealt with is the

more systematic treatment of the dynamic coupling among

translational, rotational, and vibrational motions. One way

of studying this subject may be to partition the reactance

matrix into the N+ = 0 and 2 blocks, and then reformulate all

of the formulas. Another subject which has not been dealt

with in the present study is the drawing of a map8,16,22,26 of

the photoionization of the whole system whose channel

structures are the same as the one for H2. In order to have a

map, the formulas obtained in this study should be more

condensed into reduced forms. 
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Appendix A. 

Formulas for the reduced energy for the effective 

interloper series

Since the reduced energy  for the effective interloper

series is defined as , the separation of

 into the real and imaginary parts is necessary to

obtain its formula. From the definition,  can be

written as  where  is real and where i is a

constant matrix of imaginary number i.  can be

augmented by adding the first row and columns as follows

(A1)

without changing the value of the determinant. Multipli-

cation of the first row with i and its subtraction from the

rows below it transforms the determinant (A1) into the

forms in which the real and imaginary parts are separated as

= +i (A2)

Further reduction of the second term on the right-hand side

of (A2) can be obtained by making use of |A| = |B||E-DB−1C|

as

(A3)

We thus have

, (A4)

with the reduced energy  for the single effective interloper

series is obtained as (8).

Appendix B. Derivation of the formulas for fpeff and 

Let us first consider the term contributed by the coupling

with the interloper series in (7): . To get the

formula for the enhancement factor fpeff for the reduced

spectral width  defined by the imaginary part of the

, consider the separation 

of into the real and imaginary parts. For this purpose, let us

rewrite the numerator of  as

(B1)

where the notation means that the mth column

of  is replaced by ρmp. The second step of the

derivation is the inverse application of the Laplace expan-

sion of determinant. Using the same technique used in

Appendix A, we can separate the determinant term

 of the numerator into the real and imaginary

parts as follows:

= 

− i (B2)

where hII denotes . For the sake of convenience, let

us abbreviate the four terms of the right-hand side of (B2) as

A, Ak, C, Ck so that 

(B3)

Inserting (B3) into (B1) and identifying 

with , we obtain

 (B4)

and

(B5)

where the shift sp denotes
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Study of the time-delay yields the following aesthetically

more pleasing expressions for fpeff and  as

(B7)

(B8)

For a one-channel system, fpeff should be zero once for the

effective interloper series, indicating that its numerator

should be expressed as a single square term. With fortune,

we are able to transform (B7) to (9).

Appendix C. Derivation of ,  and 

For the derivation of the decoupled formula, we need the

formula for /Dcc which is the last factor of (15). Dcc

denotes  and is equal to the real part of

 for the one-open-channel system. It is equal to

 since  is , yielding Dcc=

. We thus have

(C1)

The second equality of (C1) follows from  =

. Substituting (19) and (C1) into (15)

yields 

 (C2)

with  obtained as

(C3)

Let us now consider obtaining the formulas for  and

 describing the line profiles in the decoupled form (6).

The line profile function  for the interloper spectrum is

obtained by first obtaining the coefficient of  for the

bracketed term of (15) and then subtracting  from the

coefficient. For this purpose, consider the factorizations of

the first term Dcc

 (C4)

and the second term inside the bracket on the right hand side

of (15):

(C5)

The second term on the right-hand side of (F5) can be

further decomposed into

(C6)

where  terms are contained only in the second term on the

right hand side of (C6). In order to collect the  terms,

consider the expansion of the term   of the

type considered in (7):

(C7)

where the prime on the sub-index means that the row/

column with primed index is deleted. Substituting (C7) and

the relations

(C8)

(C9)

into (C6), we have

(C10)

with B given by

(C11)

Using the formula of  in (8), the line profile index 

given in (16) is obtained from the coefficient of 

term of (C11). Using (B5), (17) is obtained for the last

remaining QDT parameter . The denominator of the

second term on the right-hand side of (17) is equal to
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